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Abstract 

Goal-directed evaluation is a computational paradigm that combines the power of generators 

with backtracking search.  In goal-directed evaluation every expression is a generator that 

produces a sequence of values until it fails, and operations iterate over the cross-product of 

their operands to find successful results. Introduced in the influential dynamic language Icon 

and later refined in its object-oriented descendent Unicon, goal-directed evaluation is a 

powerful yet unconventional paradigm that can succinctly express search over a product 

space as well as aggregate operations amenable to parallelization. The goal of this research is 

to extend the benefits of this paradigm into other more familiar object-oriented languages 

through mixed-language embedding. However, grafting goal-directed evaluation onto other 

languages in a manner that provides seamless interoperability has remained an elusive 

challenge. 

This dissertation presents a novel approach to embedding goal-directed evaluation into 

existing object-oriented languages based on program transformation. We first introduce 

annotations for mixed-language embedding that allow mixing in Unicon functionality at the 

level of expressions, methods, or classes.  Transformations over the annotated regions then 

unravel the syntax of generator expressions to a conventional form by flattening nested 

generators and making iteration explicit, in order to enable native evaluation.  The rewriting 

rules then translate control constructs and operations onto a stream-like calculus for 

composing suspendable iterators. The transformations provide a formal semantics for Unicon 

that enable embedding into a broad variety of object-oriented languages. To demonstrate the 

utility of the approach, we have implemented the transformations for Java as well as its 
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dynamic analogue Groovy, and housed them in an interpretive harness that can function both 

interactively and as a translator for compilation. 

We further extend the transformations to enable mixed-language embedding of 

concurrent generators.  We present a simple model of explicit concurrency for generators 

based on co-expressions and multithreaded generator proxies.  We demonstrate how the 

concurrency abstractions can express parallel pipelining, as well as build higher-order 

abstractions such as map-reduce.  Mixed-language embedding allows the use of concurrent 

generators within a familiar object-oriented setting, both for high-level coordination and the 

prototyping and refinement of parallel programs for multi-core architectures.  
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Chapter 1. Introduction 

1.1 Problem statement 

Goal-directed evaluation is a powerful computational paradigm that was first introduced in 

the influential dynamic language Icon [Griswold et al. 1981, Griswold and Griswold 1996] 

and later refined in its object-oriented descendent Unicon [Jeffery 2001, Jeffery 2013a, 

Jeffery 2013b].  In goal-directed evaluation, every expression is implicitly a generator that 

produces a sequence of values or fails, and operators and function application iterate over the 

Cartesian product of their arguments to find successful results. The notion of generator 

functions has its origin in the language CLU [Liskov et al. 1977, Liskov et al. 1981], where a 

function can yield a result and then suspend until the next value is needed. In Icon and 

Unicon this concept is extended into a compact and dynamically typed notation that 

combines the power of generators with backtracking search. 

 Such backtracking search for successful results entails a depth-first traversal over 

generator expressions that rejects candidates on failure, in a manner similar to logic-

programming languages such as Prolog [Kowalski 1979, Clocksin and Mellish 1981]. Unlike 

Prolog, however, it is the implicitly aggregate nature of operations over sequences that 

produces the combinations to be filtered for success. Goal-directed evaluation is thus a 

powerful but unconventional paradigm that can succinctly express search over a product 

space as well as aggregate operations that can potentially be executed in parallel. 

While such a paradigm can succinctly express search, its sophistication makes it 

challenging to formalize and implement, as evidenced by various techniques that have been 

investigated for its translation. One notable effort, in particular, produced a Java bytecode 
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generator for Icon called Jcon [Proebsting and Townsend 2000] that employed a Prolog-like 

Byrd-box model using fail and resume ports [Proebsting 1997].  A number of other studies 

looked at continuation-based approaches for cross-translation [O'Bagy and Griswold 1987, 

Allison 1990, Walker and Griswold 1992, O'Bagy et al. 1993] as well as for formally 

defining the semantics of Icon, including a denotational semantics [Gudeman 1992] and a 

semantics based on list and continuation monads [Danvy et al. 2002]. 

Despite these efforts, goal-directed evaluation is based on such a differing evaluation 

paradigm that interoperability with other languages is severely problematic.  The Jcon 

implementation, in particular, faced difficulties in transparently interfacing with other Java 

programs due to its instrumentation of data types and expressions with suspend and resume 

advice as well as its reliance on direct bytecode generation.  And yet, such interoperability is 

highly desirable to leverage Java's portability as well as its powerful facilities for 

concurrency and graphics.  In particular, several Unicon research efforts have specifically 

focused on extensions for multithreaded concurrency and collaborative virtual environments 

[Al-Gharaibeh et al. 2012a, Al-Gharaibeh 2012b, Al-Gharaibeh et al. 2011], areas that could 

potentially benefit from cleanly interfacing with Java's extensive support for multithreading 

and 3D graphics.  Similar problems of interoperability arise when calling down into goal-

directed evaluation from another language.  A key goal is thus to achieve seamless 

interoperability with the translation target, which would allow Unicon values and class fields 

to be passed to and from native methods, and vice-versa. 

An even stronger argument can be made for the more general case of embedding goal-

directed evaluation into object-oriented languages, to expand the reach of its power in a 

familiar and minimally invasive fashion.  It is feasible to infuse the design and 
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implementation of a new language with goal-directed evaluation, as was done with 

Converge, a Python-ish language that incorporated Icon-like expressions [Tratt 2010]. 

However, a capability for grafting goal-directed evaluation onto existing languages in a 

manner that provides seamless interoperability has remained an elusive challenge. The goal 

of this research is to extend the benefits of this paradigm into other more familiar object-

oriented languages through mixed-language embedding. 

1.2 Mixed-language embedding through transformation 

This research presents a novel approach to embedding goal-directed evaluation into existing 

object-oriented languages based on program transformation. We introduce a form of 

annotations for mixed-language embedding, called scoped annotations, that allow mixing in 

Unicon functionality at the level of expressions, methods, or classes. Transformations over 

the annotated regions then unravel the syntax for generator expressions to a conventional 

form, while remaining largely oblivious to the grammar of the surrounding language.   The 

transformations first reduce primary expressions such as function invocation and object field 

reference to a normal form that flattens nested generators and makes iteration explicit, in 

order to enable native evaluation. The rewriting rules then translate control constructs and 

operations into a stream-like interface for composing suspendable iterators, called an iterator 

calculus, that extends the bound products used in flattening with functional forms such as 

reduce, map, and exists. Lastly, to accommodate Unicon's first-class reference semantics, 

methods are exposed as variadic lambda expressions that produce iterators, while fields are 

exposed in both plain and reified form. The transformations are benign in that they leave 

code foreign to Unicon unchanged, while within the regions of embedded Unicon code, the 
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mechanisms used to unravel the syntax to a conventional form provide seamless 

interoperability with other object-oriented languages. 

To demonstrate the utility of the approach, we have implemented the transformations to 

target Java as well as its dynamic analogue Groovy [Dearle 2010]. The transformations are 

housed in a generic interpretive harness that, together with a small kernel for composing 

suspendable iterators, realizes both an interactive extension of Groovy and a translator of 

embedded goal-directed evaluation into Java. The interpreter, which we call Junicon, 

supports the spectrum of approaches from embedding goal-directed evaluation into Java or 

Groovy at the expression or method level, to providing a full-fledged Java-based 

implementation of Unicon at the class level [Mills and Jeffery 2016a, Mills and Jeffery 

2016b, Mills and Jeffery 2014]. 

The transformations are formally specified at a high level as rewrite rules, in a manner 

applicable in general to conventional object-oriented languages. The transformations are then 

implemented for Java using the rule-based language XSLT (XML Language for StyleSheet 

Transformations) [Kay 2008, Clark 1999, Clark and DeRose 1999]. The XSLT 

transformations rewrite XML abstract syntax trees, derived from parsing the source 

language, and then deconstruct them into the target language.  A compact kernel in Java then 

implements the calculus for composing suspendable iterators, and serves as the final target of 

the transformations. With only slight modification, the transforms have also been retargeted 

to Groovy [Dearle 2010], a dynamic language that extends Java with relaxed type 

declarations and dynamic dispatch of methods based on their runtime types. Using these two 

sets of transforms, the implementation is able to act both as an interactive interpreter, and as 

a translator for compilation that is free of dependencies on Groovy.  
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Figure 1 illustrates the approach of high-level transformation across dynamic languages 

that forms the basis of Junicon's interpretive capability, and how it contrasts with that for 

compilation.   In Figure 1, on the left is the transformation path for compilation, in which 

embedded Junicon is first transformed into Java, and then translated into low-level bytecode 

that is run in conjunction with a Java Virtual Machine and its runtime libraries. In contrast, 

on the right of Figure 1 is the transformational interpreter that achieves interactive execution 

of embedded goal-directed evaluation by targeting Groovy, and leveraging in turn its script 

engine that iteratively translates statements into Java bytecode and then dynamically loads 

Figure 1. Embedding dynamic languages through transformation. 
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Java Virtual Machine

Java
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Java Groovy

Compiler

Transformation
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and executes it.  The Junicon transformational interpreter thus can act both interactively and 

as a translator.  The former is highly advantageous for exploration as well as rapid 

prototyping and refinement within an iterative development methodology, while the latter 

enables potentially more efficient programs that are free of dependencies on the extensive 

Groovy runtime support libraries. Embedded Junicon programs, when compiled to Java, are 

dependent only on the Junicon runtime library for suspendable iterators, which has a very 

small footprint of only 150K, and has no dependencies other than on core Java facilities in 

the standard Java distribution. 

1.3 Embedding concurrent generators 

We further extend the transformations to enable mixed-language embedding of concurrent 

generators. Goal-directed evaluation and its pervasive use of generators are potentially a 

natural fit for expressing concurrency. However, while such a paradigm can succinctly 

express search, several challenges remain in its effective application in parallel computation. 

The first challenge lies in developing concurrency abstractions that mesh with 

pervasive generators and are cleanly amenable to implementation.  To answer this challenge, 

in this research we present a minimalist set of concurrency mechanisms for Unicon that 

accommodates both Icon's coroutines, called co-expressions, and multithreaded 

communication between them using pipes. Co-expressions are coroutines that shadow the 

environment to prevent interference, while pipes are generator proxies that communicate 

with the original expression running in a separate thread using the put and take operations of 

blocking queues. Together these mechanisms are sufficient to express parallel pipelining, and 

to build higher-order abstractions such as map-reduce. 



7 
 

While it may seem a bit of an oxymoron to introduce concurrency into a dynamic 

language such as Unicon characterized by relaxed typing and dynamic dispatch, the benefits 

lie in improving performance, in enabling the prototyping and exploration of parallel 

algorithms as well as their iterative refinement, and in the use of concurrent generators for 

high-level coordination among larger-grained processes expressed in other languages.  In 

particular, the latter benefits strongly argue for the capability to embed goal-directed 

evaluation into other more efficient object-oriented languages that support parallelism.  Such 

a capability would expand the reach of generators within a familiar setting and allow their 

use for coordination as well as refinement.  In contrast to other dynamic languages that 

support parallelism [Wilde et al. 2011, Smolka 1995, Bezanson et al. 2014, Lu et al. 2014], 

our goal is to support mixed-language programming across fundamentally differing 

computational paradigms, rather than just to support multiple paradigms of concurrency 

within a single language. 

To answer the above challenge of embedding concurrent generators into existing 

object-oriented languages, we extend the transformational approach to yield an 

implementation of co-expressions as well as multithreaded generator proxies. Our work 

provides a model of concurrent generators that simplifies and unifies the thread-based model 

previously developed for Unicon in [Al-Gharaibeh et al. 2012a, Al-Gharaibeh et al. 2012b], 

and enables its embedding into other object-oriented languages. 

First, we present a simple model of explicit concurrency for generators based on co-

expressions and multithreaded generator proxies.  We demonstrate the utility of the model in 

expressing parallel pipelining, as well as building higher-order abstractions such as map-

reduce, in a mixed-language setting that uses scoped annotations to specify the embedding of 
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concurrent generators.  Second, we present techniques for transforming concurrent generators 

into Java that leverage Java's facilities for multi-threaded concurrency. The techniques rely 

on flattening as well as on synthesizing co-expressions and multithreaded generator proxies. 

Mixed-language embedding allows the use of the succinct notation of concurrent generators 

within a familiar object-oriented setting, both for high-level coordination and the prototyping 

of parallel programs for multi-core architectures.  In particular, the provision for interactive 

evaluation further enhances the ability for exploration and rapid prototyping. 

1.4 Contributions 

The contributions of this research are as follows. First, we define a novel form of 

annotations, called scoped annotations, that can be used for mixed-language embedding. 

The annotations specify the language of a region to be embedded, and allow mixing Unicon 

functionality into Java, as well as of Java functionality into Unicon. 

Second, we develop a technique for flattening nested generators that enables the 

grafting of goal-directed behavior onto other languages with seamless interoperability. By 

reducing pervasive generator expressions to a recognizable and explicit form, we clarify the 

semantics so that it can be understood in terms of conventional programming language 

concepts.  We present a context-sensitive reduction semantics for flattening in the style of 

Felleisen-Hieb [Wright and Felleisen 1994]. The rewriting rules used to unravel the syntax to 

a conventional object-oriented form provide an operational semantics that has potentially 

broader applicability for embedding Unicon into a wide range of target languages. 

Third, we derive a calculus for composing suspendable iterators that extends the 

products of bound iterators used in flattening with functional forms such as reduce, map, 

and exists. The iterator calculus forms a minimal basis into which Unicon's control 
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constructs and operators are transformed, and can be efficiently implemented in a tightly 

knitted kernel.  The equational translation of constructs into that basis further provides a clear 

operational semantics of Unicon. 

Fourth, we extend the transformational approach to the area of concurrency in 

Unicon. We present a model of concurrent generators based on co-expressions and 

multithreaded generator proxies, called pipes. We extend the transformations to allow 

embedding of concurrent generators, which enables their use both for the high-level 

coordination of processes in other languages, and the prototyping and refinement of parallel 

programs for multi-core architectures. 

Lastly, we realize a transformational interpreter for embedding goal-directed 

evaluation into Java as well as Groovy, that can function either as a translator or 

interactively, respectively. By carefully transforming onto Java in a manner that preserves 

types such as lists using their Java equivalent, we can seamlessly integrate with and leverage 

the full range of Java capabilities.  By also targeting a language such as Groovy, we are able 

in turn to realize an interactive interpreter that permits line-by-line evaluation. Such 

interactive evaluation enhances capabilities for exploration and rapid prototyping. The 

implementation also demonstrates how mixed-language embedding using transformation can 

be used to extend languages with advanced features such as suspendable generator functions. 

The remainder of this dissertation is organized as follows. Chapter 2 first provides more 

detailed background on Icon and Unicon. In Chapter 3 we describe scoped annotations and 

illustrate their application to mixed-language embedding for both Groovy and Java. Chapter 

4 presents a model of concurrency for generators, and examines their application to 

expressing parallel pipelining and map-reduce within a mixed-language setting. In Chapter 5 
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we describe the transformations that flatten generator expressions, as well as the translation 

of methods into variadic lambda expressions. Chapter 6 then provides details on the 

implementation of the transformations, formalized as rewrite rules in Chapter 5. Chapter 7 

presents the results of benchmarking goal-directed evaluation when translated to Java.  

Lastly, Chapter 8 reviews related work, and we present our conclusions in Chapter 9. 
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Chapter 2. Background 

Icon is a unique programming language designed as the successor to the string pattern 

matching language SNOBOL [Griswold et al. 1971]. At the heart of Icon is the notion of a 

generator, which is an expression whose evaluation lazily yields a sequence of values, i.e., 

generates them one at a time on demand. As in CLU and later languages such as C# [Jagger 

et al. 2007] and Python [Rossum and Drake 2011], generators in Icon can be constructed 

using generator functions that use a suspend statement – corresponding to CLU's yield – to 

return a value and on the next iteration resume at the point of suspension. 

For example, invocation of the following Icon procedure will result in a generator that 

produces an ascending sequence of values: 

 procedure range (from, bound) 

  local count; 

  count := from; 

  while (count<=bound) do { suspend count; count +:= 1 } 

 end 

Thus, the expression range(1,2) yields the values 1 and 2, and then fails.  Such generators 

can be used in lieu of collections in loops and list comprehension.  While Icon uses the term 

generator, we will use the term iterator interchangeably with it, and will distinguish it from a 

Java Iterator when necessary.  In the examples that follow, we use a modernized version of 

the Pascal-like syntax of Icon and Unicon, in which = is used for assignment instead of :=,  

def may be used instead of procedure or method, and braces {} may be used for block 

structure instead of end. 
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2.1 Goal-directed evaluation 

However, Icon goes a step further than CLU in its pervasive use of generators. In Icon every 

expression is a generator that produces a sequence of values or fails1, and nested generators 

are implicitly composed by mapping functions or operations over the cross-product of their 

arguments, and then filtering to find successful results.  For example, consider the simple 

expression that finds multiples of prime numbers in a given range: 

 (1 to 2)  *  isprime (4 to 7) 

where isprime(x) is defined to produce x if it is prime, and otherwise fail, and the to 

construct produces a range of numbers. 

The above expression will, for each value in the sequence (1,2), iterate through each 

value in the second sequence (4,5,6,7) and for the latter that are prime numbers, yield their 

product.  The compound expression itself forms a generator that, at each iteration, searches to 

find the next successful result, and so produces the sequence 1*5, followed by 1*7, then 2*5, 

then 2*7.  Such search has particular application in string processing, the forte of Icon and 

Unicon. 

The implicit composition of nested generators in Icon may be more clearly understood 

by decomposing it in terms of Icon's product operator, 

 e & e' 

which for each i in e, iterates over each j in e', and yields j as the next successful result of 

iteration.  Formally, 

                                                 
1  Strictly speaking, in Icon parlance a generator is an expression that can produce multiple 
results.  In this dissertation we use the term generator to also include expressions that only 
produce at most one result.  Failure can be modeled either with an explicit fail value, as is 
done here, or implicitly as the empty sequence, as in [Danvy et al. 2002]. 
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 e & e' ≡ filter(succeed (for i in e { for j in e' { j } })) 

Function application, f(e,e'), is then equivalent to 

 f(e,e') → (i in e) & (j in e') & (k in f(i,j)) 

where (i in e) denotes bound iteration that assigns each value in the iterator sequence for e to 

a variable i, and where f is a generator function that produces a sequence of values on 

invocation. The final result of the above expression will be a sequence whose values are 

bound to k.  Applying the above transformation to operators, (i=e) can further be seen to be 

equivalent to (i in e). 

The above example of prime multiplication can thus be recast as an iterator product: 

 i=(1 to 2)  &  j=(4 to 7)  &  isprime(j)  &  i*j 

which corresponds to the Python generator expression: 

 (i*j for i in range(1,2) for j in range(4,7) if isprime(j)) 

and represents nested iteration.  Conversely, a Python generator expression 

 f(x) for x in S if P(x) 

is equivalent to Icon’s 

 (x=S) & P(x) & f(x) 

Generator expressions are also closely related to Java streams as well as monad 

comprehension [Mills and Jeffery 2016a]. In the terminology of Java streams, 

 f(e) → e.flatMap(x->f(x)).filter(succeed) 

The above examples highlight how goal-directed evaluation combines generators with 

the concept of success and failure.  An expression, at each iteration, succeeds and produces a 
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value, or fails and terminates the iterator, which in turn fails.  In other words, generators, 

when viewed as Java iterators, are terminated by failure of the next() method.  Moreover, at 

each iteration, an operation will generally be performed only if the operands all succeed, and 

otherwise it fails. Thus, expression evaluation is conditioned on the success of its terms. For 

example, the expression: 

 x = if (k > 0) then k 

will perform an assignment to x only if k > 0, since otherwise the if  expression fails, which in 

turn causes the assignment to fail. In Icon, the concept of true or false is thus replaced with 

success and failure, and failure propagation is analogous to a bottom-preserving or 

undefined-preserving semantics.  Failure propagation also applies to function invocation.  

For example, f(x,y) will fail if either of the arguments x or y fails, and therefore the call to f  

will not occur.  Similarly, in the iterator product x & y, if at a given iteration point the 

precondition x fails, then y is not evaluated.  The & operator is thus fundamental as it 

embodies notions of both cross-product and conditional evaluation. 

It is important to note that, since every expression is a generator, their composition, and 

the program in toto, just yields one large iterator.  Even the familiar sequence construct, 

a;b;c, denotes the concatenation of iterators that runs through a and b as singleton iterators 

that are limited to producing at most one result, called bounded expressions, and then 

delegates remaining iteration to the last term c.  Actual iteration, i.e., executing the iterator's 

next(), only occurs at the outermost level of interaction. These points occur at interpreted 

statements outside a class definition, in class field initializers, and in the main method of a 

program. 
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Icon also provides a notion of reversible assignment, x <- y, which on more than one 

iteration, reverses the assignment and then fails.  For example, in the unbounded expression 

(x<-y) & e, if e fails, x will revert to its original value.  Reversible assignment, along with 

string scanning, is one of the few traces of implicit data backtracking in Icon, since elsewhere 

state is not saved or restored. 

2.2 Reference semantics 

Icon further provides an expressive reference semantics that supports lazy dereferencing. 

Variable references are treated as first-class citizens in generator expressions, and are only 

dereferenced when needed. This derefencing occurs, for example, when variables are used as 

arguments to operators or methods, and therefore methods have call-by-value semantics. 

Expressions can thus yield variable names to be assigned or invoked. For example, in the 

expression: 

 (if i > j then i else j) = 0 

the value 0 is assigned to i or j depending on their comparison. Under the hood, the generator 

on the left-hand-side of the assignment produces a reference to i or j, which is then used by 

the assignment operator. Indexing operations are also first class citizens, in that an index such 

as c[i] is maintained as an offset into a collection until its value is needed, and so provides an 

updatable reference. The above implies that variables need to be exposed as reified properties 

with getters and setters, in order to be passed as updatable references. 

Similarly function names used in invocation can themselves be generator expressions.  

For example, 

 (f | g)(x) 
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where | means concatenation of generators, is equivalent to: 

 f(x) | g(x) 

and so iterates first through f(x) and then g(x).  The above implies that method references, or 

some form of lambda abstraction, may be required for implementation. 

Goal-directed evaluation thus embodies a conventional syntax with a very 

unconventional meaning.  The provision of implicit search as well as the reference semantics, 

while powerful, pose formidable challenges in transparently interfacing with other languages. 

2.3 Co-expressions and threads 

Icon and Unicon also provide support for interleaving as well as true concurrency in the form 

of coroutines and multithreaded interaction, respectively. A coroutine is an expression that 

can suspend and transfer control to another expression, and when called again will resume at 

the point of suspension with its environment intact. Icon incorporates a notion of coroutines, 

called co-expressions, that preclude interference by copying local variable references upon 

creation, and that are explicitly stepped on each iteration using an @ operator.  

Unicon then extends co-expressions with support for true concurrency in the form of 

multithreaded interaction. Previous work on concurrency in Unicon [Al-Gharaibeh et al. 

2012a, Al-Gharaibeh et al. 2012b] extends Icon with co-expressions that can run in a separate 

thread, and communicate with each other through a variety of synchronization mechanisms 

including explicitly created blocking channels and mutexes.  While sufficient to express a 

wide variety of parallel interaction, communication is explicit, and to date there is no 

mechanism to naturally chain together generators at a high level. 
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2.4 Java and its dynamic analogue Groovy 

While our research focuses on general techniques for embedding goal-directed evaluation 

into any conventional object-oriented language, the choice of Java as a translation target for 

the implementation is carefully chosen. Java [Gosling et al. 2014] is a statically typed object-

oriented language that is compiled to a platform-independent intermediate bytecode, and then 

run in conjunction with a platform-specific JVM (Java Virtual Machine) that interprets the 

bytecode. The widespread adoption and popularity of Java arises from its clean design, 

portability, and vast array of libraries such as for graphics and concurrency, including 

support for multithreaded execution on multi-core architectures. 

In contrast, Groovy [Dearle 2010] is a dynamic version of Java which is implemented 

by compilation into Java bytecode that runs on any Java virtual machine.  Like Icon, Groovy 

is dynamically typed, in other words variables need not be declared as having a type.  Groovy 

also provides seamless interoperability with Java, in that Groovy class instances and data 

types can be transparently passed to and from Java, with class fields accessed, and similarly 

methods invoked, from either side.  A notable feature of Groovy is its provision for 

parameterized closures, which expresses lambda abstraction, also called lambda expressions 

in Java. For example, 

 def f = {x,y -> x+y} 

defines f as a function formed from the closure of the expression to the right of the arrow, 

and with parameters x and y.  A closure in Groovy always returns the last argument.  As 

expected, f(1,2) will thus yield the value 3.  An equivalent lambda expression in Java is: 

        Function f = (x,y) -> { return x + y; } 
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Lastly, Groovy also provides an interpreter for interactive line-by-line evaluation: this 

interpreter is exposed as a Java-compliant scripting engine that can be used to create a 

transformational interpreter. The above features, in particular its relaxed typing and its 

provision of closures, make Groovy an attractive translation target for embedded Unicon in a 

manner that supports interactive interpretation. 

While Unicon is a powerful language whose dynamic typing makes it easy to use, there 

was previously no way to cleanly embed it into Java or Groovy, nor arguably a clear 

operational semantics of its underlying goal-directed evaluation that would drive such an 

implementation.  Yet embedding Unicon into Java, and in particular providing an interpreter 

for such a capability through Groovy, has many potential advantages.  These advantages 

include portability, access to Java concurrency and graphics utilities, the use in web 

applications, and the potential to integrate into the increasingly widespread Java-and-Linux-

based Android Operating System for mobile handhelds.  In contrast to earlier efforts for a 

Java based Icon implementation [Proebsting and Townsend 2000], our research focuses on 

embedding goal-directed evaluation through higher-level cross-translation that maintains 

consistency with the Java type system. 
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Chapter 3. Multi-Language Integration 

A primary goal of this research is to enable the use of goal-directed evaluation within the 

broader scope of other languages. In particular our approach to support multiple languages 

and paradigms is to specify embedding in a manner where the embedded regions are 

oblivious to the grammar of the surrounding context. In our implementation we do not need 

parsers for Java or Groovy.  Rather, we only need a general metaparser that recognizes 

complete statements, based on grouping delimiters such as braces and parentheses, in order 

to recognize embedded regions.  Within a transformational framework, each embedded 

region is then transformed and injected into the surrounding context, from the innermost 

outwards, to yield the final program.  The exact transforms are dependent on both the 

embedded and surrounding language types. 

3.1 Scoped annotations 

To specify embedded regions we introduce a novel form of annotations, called scoped 

annotations, that blend Java annotations and XML.  For example, scoped annotations of the 

form: 

 @<script lang="junicon"> x = f(g(y)); @</script> 

are used to specify the embedded language, and delimit the sections of code where flattening 

of generator expressions occurs.  Scoped annotations have the following admissible forms: 

 @<tag attr1=x1 ... attrn=xn> expression @</tag> 

 @<tag attr1=x1 ... attrn=xn/> 

 @<tag(attr1=x1, ...  ,attrn=xn)> expression @</tag> 

 @<tag(attr1=x1, ...  ,attrn=xn)/> 
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where the tag name may be qualified with either an XML namespace or Java package name, 

respectively.  Like XML, such annotations can surround multiple statements, and can also be 

nested.  Unlike conventional Java annotations that are limited to attaching metadata to 

declarations or type use, scoped annotations can in addition modify expressions as well as 

arbitrarily delimited sections of code. 

The above syntax of annotations for multi-language embedding is carefully chosen so 

that, similar to XML, it is attributed and scoped. The syntax is also chosen to be familiar and 

closely allied to Java annotations as well as other notations for scripted embedding such as 

HTML. However, the syntax is constrained so that its embedded use does not conflict with 

most programming language notations, nor does it collide with other forms of annotations 

such as for Java. In particular it differs from other notations such as JSP (Java Server Pages) 

in that, because it is tag-based, it can support multiple languages, and a single syntax 

supports both embedding and translator directives. 

In a dual manner, a scoped annotation with @<script lang="java"> specifies native 

Java evaluation.  When used outside a Unicon region, the latter exempts the section of code 

from being transformed, and so it is directly compiled, or if interactive, is passed through to a 

Groovy script engine.  When used within a Unicon region, it lifts the code into a singleton 

iterator over its closure, so that it can participate in goal-directed evaluation. The 

transformation that takes scoped annotations for native evaluation into goal-directed 

evaluation is as follows: 

 @<script lang="java> code @</script> 

  → ! ()->{< code >} 
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where {< … >} denotes block quotes used to capture the code text as a quoted string, which is 

then directly compiled to Java or evaluated by the Groovy script engine. 

3.2 Mixed-language embedding 

A more detailed example that illustrates embedding Unicon into Groovy is given in Figure 2, 

showing a chain of mixed paradigm invocations. As mentioned previously, Groovy [Dearle 

2010] is a dynamic language that extends Java with relaxed type declarations and dynamic 

dispatch based on runtime types.  The top of Figure 2 shows a Groovy method for printing all 

the prime multiples in a given range.  The top method in turn invokes a Unicon method 

findPrimes, shown in the center of Figure 2.  Invocation of the Unicon method returns a 

@<script lang="groovy"> 
class PrimeMultiples { 
 def  printAll (lower, upper) { 
    for (i in findPrimes(lower, upper)) { println(i); }; 
 } 

 @<script lang="junicon"> 
  def  findPrimes (lower, upper) { 
     suspend (lower to upper) * isprime(lower to upper); 
  } 
 @</script> 

 def   isprime (num) { 
     def  result = 
     @<script lang="junicon"> 
      { local i; 
    if not((i = 2 to Math.sqrt(num)) & (num % i == 0)) then num else fail 
  }; 
     @</script> 
     return result; 
 } 
} 
@</script> 

Figure 2. Embedding goal-directed evaluation into Groovy. 
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generator, exposed in the top method as a Java Iterator.  Of particular note is that the Unicon 

method uses a suspend statement to create a generator function, a feature otherwise missing 

from Groovy as well as Java. 

The Unicon method then cuts down to a Groovy method isprime, which in turn uses an 

Icon generator expression to test if the number has any divisors.  The generator expression 

succeeds with a prime number, or fails, and that failure is passed back up to the invoking 

Unicon method.  Lastly, within the generator expression a native Java method Math.sqrt is 

invoked.  It bears noting that there is an implicit next() around the embedded generator 

expression in the annotation, so that it returns the first iteration. 

Figure 2 illustrates several key features of our approach.  First, goal-directed evaluation 

can be embedded at the method or expression level, as well as the class level if desired.  

Second, the embedding can be arbitrarily nested across differing languages.  Third, the 

technique for embedding, in conjunction with the transformations described in Chapter 5, 

provides seamless interoperability when intermixing Unicon and Groovy, as well as Java. 

Specifically, native types can be transparently passed to and from Unicon, including class 

instances and collections such as lists, with fields accessed and methods invoked from either 

side.  In particular, since Unicon methods return a Java iterator, they can be freely used from 

within Java as well as Groovy. 

An equivalent example that illustrates embedding Unicon into Java is given in Figure 3. 

The top and middle portions of Figure 3 are largely unchanged, showing nearly transparent 

interoperability.  However, the bottom isprime method has been enhanced to illustrate the 

differences when embedding to Java, as well as Junicon's support for lambda expressions and 

type coercion.  At the bottom of Figure 3, the isprime Java method can be seen to create an 
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embedded goal-directed lambda expression, and then invoke it to return the prime number or 

fail. Two subtleties arise here.  First, the lambda expression is variadic2 and returns an 

iterator, and so an explicit next() is required to return the first iteration, as shown in the very 

bottom of the figure. 

Second, unlike Groovy, in Java a lambda expression is a functional interface that must 

be invoked with an explicit method name such as apply. This need for an explicit name also 

applies to method references, since method references in Java are just lambda expressions for 

                                                 
2 The term variadic means that the function takes any number of arguments. 

@<script lang="java"> 
public class PrimeMultiples { 
 public void printAll (int lower, int upper) { 
     for (Object i : findPrimes(lower, upper)) { System.out.println(i.toString()); } 
 } 

 @<script lang="junicon"> 
     def  findPrimes (lower, upper) { 
      suspend (lower to upper) * this::isprime(lower to upper); 
  } 
 @</script> 

 public Object isprime (Object num) { 
  VariadicFunction<Number,Iterator> generator = 
  (VariadicFunction<Number,Iterator>) 
   @<script lang="junicon"> 
  { (num) -> {  local i; 
           return if not((i = 2 to Math::sqrt((Double) num))  
                & (num % i == 0)) then num else fail } 
  }; 
  @</script> 
  return generator.apply(((Number) num).doubleValue()).next(); 
 } 
} 
@</script> 

Figure 3. Embedding goal-directed evaluation into Java. 
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methods that already have a name.  Since Unicon methods are exposed on the surface as 

method references in order to allow the use of function names in expressions, their use must 

be differentiated from native Java method invocation, achieved by using :: for the latter. 

As illustrated in Figure 3, Junicon incorporates several syntactic features to support 

interoperability with Java, including casts for type coercion as well as types in variable 

declarations, package dot notation, instance creation using new, lambda expressions, and 

method references.  The above features are provided to support accessing native Java classes 

and methods from within Junicon.  Junicon also conservatively extends Unicon syntax to 

directly allow a familiar Java-like block notation for classes and methods. 

The examples in Figures 2 and 3 highlight how Groovy's dynamic typing allows fully 

transparent bidirectional interoperability, while embedding in Java provides near-seamless 

interoperability that differs only slightly when calling Java methods that are foreign to 

Unicon.  In particular, Figure 3 shows how native Java method invocation, as well as inline 

Java code, can be intermixed with goal-directed evaluation. 

Scoped annotations are thus the first step towards grafting goal-directed evaluation onto 

other languages.  In the next chapter we describe how scoped annotations can similarly be 

used to graft a model of concurrent generators onto other languages. 
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Chapter 4. Concurrency 

4.1 Model of concurrency 

Generators are a natural fit for expressing concurrency. In dynamic languages such as Icon 

and Unicon where every expression is a generator, there is a pervasive opportunity for 

exploiting concurrency. While their composition under goal-directed evaluation offers the 

potential for chaining generators together in parallel, no model has been proposed which 

leverages this potential.  In this section we present a simple model of explicit concurrency for 

generators that naturally transforms the composition of generators into parallel pipelines tied 

together using blocking queues.  The spartan set of concurrency operators is sufficient to 

express true concurrency in the form of parallel pipelining, as well as to build higher-order 

abstractions such as map-reduce. 

Figure 4 presents a minimalist set of operators for concurrent generators.  In Figure 4, 

the model of concurrency is based on a single unified notion of first-class iterators that must 

be explicitly stepped to the next iteration.  The simplest first-class operator lifts a given 

expression into a singleton iterator that returns the original generator, in other words, 

 <>e → new Iterator() { next() { return e; } } 

Explicitly stepping the first-class generator is through the @ operator: 

 @e → e.next() 

Promoting the first-class entity back to a generator is through the ! operator: 

 !e → new Iterator() { next() { return @e; } } 

which simply unravels it, or equivalently 
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 !e → repeatUntilFailure(suspend @e) 

since the composed iterators must be suspendable.  Lastly, the restart operator ^ resets the 

iterator to its beginning state. 

4.1.1 Co-expressions 

A co-expression is similar to a first-class iterator, but in addition creates a copy of its local 

environment, i.e., it shadows all referenced method local variables and parameters.  In other 

words, 

 |<> e → ^(<>e) 

where the refresh operator ^ for co-expressions is refined as follows, using Java's notation for 

lambda expressions and where (x,y,z) are all referenced locals: 

 ^e → ((x,y,z)-> e) ((()->[x,y,z])()) 

Co-expressions thus minimize interference by isolating a copy of the local environment.  In 

addition, as with a normal coroutine, the @ activation operator will transfer control between 

co-expressions so as to interleave the threads of execution. 

<> e First-class generator. 
|<> e Co-expression that shadows the local environment. 
|> e Generator proxy that runs in a separate thread. 
@ c Next, i.e., step co-expression one iteration. 
! c Promote co-expression to a generator. 
^ c Restart with a new copy of the local environment. 

where e is an expression, and c is a co-expression. 

Figure 4. Calculus for concurrent generators. 
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4.1.2 Generator proxies 

Lastly, a pipe is simply a generator proxy for a co-expression that runs in a separate thread 

and iterates until failure, and uses a blocking channel for the communication of results.  A 

blocking channel, or blocking queue, has put and take operations that wait until the queue of 

results is not full or not empty, respectively.  Each iteration of the proxy will wait until a 

result has been placed in the channel by the co-expression running in the separate thread.  

Thus the surrounding expression runs in parallel to the piped expression.  In other words, 

 |>e → new Iterator() { next() { new Thread { run() { 

  c=|<>e; while (!fail) { out.put(@c); }}}.start() }} 

where out is the output blocking queue, and an @ operation on a pipe is out.take().  The 

output blocking queue is a plain Java BlockingQueue, and is exposed as a public field to 

permit further manipulation. Bounding the output queue buffer size can also be used to 

throttle a threaded co-expression. 

In its simplest form, a singleton piped iterator that produces one result forms a future or 

mutable variable, whose put and take operations wait until the channel is empty or full 

respectively. Historically it has been well established that mutable variables are a 

fundamental building block that can be used to build higher-order concurrency abstractions. 

Examples of mutable variables can be found in Id Noveau's M-structures [Barth et al. 1991], 

the M-Vars of Parallel Haskell [Nikhil et al. 1995] and Concurrent Haskell [Peyton-Jones et 

al. 1996], and Linda's tuplespace operations [Carriero and Gelernter 1989], as well as in an 

earlier form in the single-assignment synchronization variables of CML that wait on read 

until being defined [Reppy 1991].  Not surprisingly, the derived blocking queues of Java are 

similarly powerful building blocks, and while they do not preclude the beneficial use of other 
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synchronization mechanisms, they do provide the basis of a minimal framework for 

coordination. 

The above calculus for concurrent generators is thus sufficient to express a wide variety 

of parallel computations.  For example the simple expression 

 x  *  ! |> factorial(! |> sqrt(y)) 

will, for given generated sequences x and y, spawn off their factorial and square-root 

computations in parallel, effecting explicit task parallelism in the form of a pipeline.  A 

pipeline consists of a chain of tasks where the output of each element is the input of the next, 

synchronized using some form of blocking queues.  The above is in contrast to 

 x * y 

which reflects implicit data parallelism over the two generator sequences, and is the type of 

aggregate operation naturally amenable to map-reduce.  The term map-reduce [Dean and 

Ghemawat 2008] refers to a constrained parallel functional style whose aggregate operations 

consist of stages of map functors followed by an optional shuffle and then reduction.  The 

paradigm typifies Java parallel streams, and is typically implemented by partitioning the 

stream and then having multiple worker threads perform data-parallel operations sequentially 

on the decomposed chunks of data. 

For example, for a given chunk c, mapping a function f over the chunk would be 

expressed using generators as: 

 ! |> f(!c) 

where the ! operator lifts lists as well as co-expressions to iterators.  The above formulation is 

subtly different from conventional map-reduce in that it enforces ordering between the results 
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of the partitioned threads.  However, such a formulation still requires the streams to be 

effectively splittable, i.e., have non-interference within a given stream operation. 

The data-parallel decomposition of map-reduce thus differs from the calculus of 

concurrent generators: the former can be viewed as fixed-data that applies all pipeline stages 

to data distributed over threads, while the latter can be viewed as fixed-code that assigns a 

pipeline stage to each thread and exchanges data between them, using the terminology of 

[Bienia and Li 2010].  Figure 5 illustrates the relationship between pipelining and data-

parallel decomposition when specified using concurrent generators.  In Figure 5, the tan 

oblongs around the square sequence elements represent separate threads of execution, which 

Pipeline f(! |>s)

Data parallel every (c=chunk(s))  |> f(!c)

s

f

fc fcfc fc

Figure 5. Pipeline and data-parallel models. 
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for pipelines encapsulate an entire stream, while for data-parallelism encapsulate a chunk of 

the source stream over which the function is mapped. 

In the next section we examine how, in conjunction with multi-language integration, 

concurrent generators can be used to build and explore higher-order concurrency abstractions 

such as map-reduce. 

4.2 Mixed-language embedding of concurrent generators 

A key facet of our approach is to enable the use of concurrent generators, and goal-directed 

evaluation in general, within the broader scope of other languages that support parallel 

programming. A detailed example that illustrates embedding concurrent generators into Java 

is given in Figure 6, showing a chain of mixed paradigm invocations.  The program in Figure 

6 takes lines of text, and computes a hash of the lines by splitting each line into words, 

converting the words into numbers, taking their square root, and then summing the result.  

Near the bottom of Figure 6, the Java method runPipeline can be seen to iterate over an 

embedded generator expression that spins off a pipeline to translate the words into numbers 

before computing their square root.  The embedded expression returns a generator, exposed 

as a Java Iterator used in the for  statement.  The Unicon expression in turn cuts down to Java 

methods wordToNumber and hashNumber, as well as to a Unicon method splitWords. 

At the bottom of Figure 6 is a map-reduce version of the runPipeline  method, called 

runMapReduce.  Its mapReduce method in turn is defined in Figure 7, and implements a 

simple variant of map-reduce defined in the previous section. In Figure 7, the first method 

chunk breaks up a source stream into chunks, each chunk being a list of fixed size.  The 

second method mapReduce then, for each chunk derived using the generator function s, 

spins off a task to map the given function f over its elements, and then reduces the result with 



31 
 

the reduction function r and initial value i.  Lastly, the mapReduce method returns a 

generator over the results of each chunk. 

The programs in Figures 6 and 7 demonstrate how embedding concurrent generators, 

and in general a dynamic language for goal-directed evaluation, can be used to explore and 

Figure 6. Embedding concurrent generators into Java. 

class WordCount { 
  static String[] lines; 

  @<script lang="junicon"> 
    def readLines () { suspend ! lines; } 
    def splitWords (line) { suspend ! ((String) line)::split("\\s+"); } 
    def hashWords (line) { 
     suspend this::hashNumber(this::wordToNumber( ! splitWords(line))); 
    } 
    def sumHash (sofar, hash) { return sofar + hash; } 
  @</script> 

  public Object wordToNumber (Object word) throws NumberFormatException { 
      return new BigInteger((String) word, 36); 
  } 
  public Object hashNumber (Object word) { 
 return new Double(Math.sqrt(((Number) word).doubleValue())); 
  } 
  public void runPipeline () { 
 double total = 0; 
 for (Object i :  
   @<script lang="junicon"> 
        this::hashNumber( ! (|> this::wordToNumber( ! splitWords(readLines())))) 
   @</script> 
 ) { total = total + ((Double) i).doubleValue(); }; 
  } 
  public void runMapReduce () { 
 double total = 0; 
 DataParallel dp = new DataParallel(1000); 
 for (Object i : dp.mapReduce(hashWords, readLines, sumHash, 0) { 
  total = total + ((Double) i).doubleValue(); 
 }; 
  } 
} 
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prototype the comparative performance of parallel algorithms.  In particular, since the 

implementation of the calculus for concurrent generators leverages the Java facilities for task 

management and communication, their seamless integration permits iterative refinement into 

Java.  As mentioned in the introduction and observed in evaluation, when using an embedded 

dynamic language, and in particular one supporting goal-directed evaluation, there is a 

tradeoff of performance for succinctness.  The role of embedded generators in a parallel 

setting is thus envisioned to be one of exploration and prototyping, as well as potentially one 

of coordinating more computationally intensive pieces encoded in languages such as Java. 

In the next chapter we describe the transformations that enable goal-directed evaluation 

to be embedded into other languages with seamless interoperability. 

class DataParallel { 
  public DataParallel (int size) { this.chunkSize = size; } 
  int chunkSize = 1000; 

  @<script lang="junicon"> 
  def chunk(e) {   # Partition e into chunks 
    chunk = []; 
    while put(chunk,@e) do { 
  if (*chunk >= chunkSize) then { suspend chunk; chunk=[]; } 
 }; 
    if (*chunk > 0) then { return chunk; }; 
  } 
  def mapReduce(f,s,r,i) {  # Map f over s and reduce with r 
 var c, t, tasks = []; 
 every (c = chunk(<>s)) do { 
  t = |> { var x=i; every (x=r(x, f(!c) )); x }; 
  ((List) tasks)::add(t);  
 }; 
 suspend ! (! tasks); 
  } 
  @</script> 
} 

Figure 7. Building map-reduce using concurrent generators. 
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Chapter 5. Transformation 

In this chapter we formalize the transformations that embed Unicon into Java, and with little 

modification into its dynamic analogue Groovy. A fundamental challenge in embedding 

goal-directed evaluation is that it is based on such a different paradigm that interoperability 

with other languages is severely problematic. Our approach to solve this problem is to 

unravel the syntax to a conventional form in a manner that enables native function 

invocation, and so maintains seamless interoperability with the surrounding target language. 

Program transformation is a broad term that refers to changing the form of a program 

into another one that is semantically equivalent, or, for example in some cases of refinement, 

more specific [Feather 1987, Reddy 1990, Li 2010]. While program transformation 

encompasses translation, which includes compilation and interpretation, as well as the formal 

refinement of specifications and rephrasing, our focus here is on what is sometimes called 

migration, that is, translation into another language at the same level of abstraction [Visser 

2005]. 

The transformations that take Unicon into Java and Groovy are formalized as term 

rewriting rules, and so yield a partial operational semantics.  Indeed, all operational 

semantics can be understood as rewriting logics [Serbanuta et al. 2009]; transformations may 

be understood as differing in that they descend to intermediate representations rather than 

final values. 

The motivation for targeting the transforms to both Java and Groovy arises from the 

desire to complement the performance and smaller footprint of Java with the interactive 

interpretation provided by Groovy.  While it is possible to translate Junicon into Java 

bytecode using the Groovy compiler on the transformed Groovy program, the motivations of 



34 
 

improved performance as well as the removal of dependencies on external Groovy libraries 

argue for the direct translation of Junicon into Java.  Such a migration to both Java and 

Groovy also provides insight into the stability of the transformations under retargeting.  The 

transformations must address key differences of Groovy from Java, including in particular 

the use of typed declarations as well as differences in closure and lambda expression notation 

and behavior. While the discussion below focuses on transformation into Java, the translation 

into Groovy is a relaxation of a few constraints, such as needing to use apply for lambda 

expressions in method invocation. 

The differences can be addressed with only minor changes to the concretization 

transformations and class generation, and notably no changes to normalization.  Translation 

to Java is enabled by simply aligning the syntax for closures to that of Java lambda 

expressions, and by slightly modifying the concretization transforms to emit types, e.g., 

Object  instead of def .  For classes, only a slight modification to method definition and 

invocation is required to expose methods as variadic lambda expressions.  However, these 

modifications must carefully overcome limitations in forward references as well as subtle 

differences in the syntax for invoking lambda expressions. The above changes to the 

transforms are parameterized in the XSLT transforms of the implementation, so that the 

interpreter can generate either Java or Groovy code. 

The transformation of Unicon into Java is broken down into four stages: a 

transformation ࣨ for flattening or normalization of primary expressions, a transformation ࣮ 

that translates larger expressions including control constructs and operations into an iterator 

calculus, a transformation ࣥ that concretizes the iterator calculus into Java, and finally a 

transformation ࣝ that handles classes and methods.  In the following discussion we use the 
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term normalization, which refers in general to reducing to a normal form that cannot be 

further rewritten, synonymously with flattening. 

We make the normalization transform ࣨ independent of the later transforms for control 

constructs and classes, so as to enable staging them separately.  Although it is feasible to 

equivalently define ࣨ to be recursively dependent on ࣮, the above independence of ࣨ is 

desirable, since normalization reflects aligning generator expressions with a more 

conventional semantics, and ࣨ can then be used as a standalone transformation to graft such 

a capability onto other languages.  The latter is the approach taken in our implementation, 

and is reflected in the XSLT transforms as well as the staged structure of the generic 

transformational interpreter, described later. 

Figure 8 illustrates the flow of transformation within the Junicon interpreter.  While the 

transformations below are formalized as rewrite rules over program expressions, under the 

hood the transformations operate on XML abstract syntax trees that represent these 

expressions. Together with a front-end preprocessor and an XML-emitting parser, the 

transformations are thus used by the interpreter to effect embedding.  

It bears emphasizing that the techniques described in this research are made possible by 

having either the transformation source or target be a dynamically typed language. In the 

presence of static typing and complex type systems, the problem of transformation is vastly 

more complex.  
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5.1 Normalization of primary expressions 

The first step in the transformation that embeds Unicon into a conventional object-oriented 

language such as Java is the flattening or normalization of primary expressions. A key goal in 

the transformation of Unicon is to preserve type declarations and their use in function 

invocations and field references, so as to enable the use of native evaluation mechanisms and 

their concomitant optimization, as well as seamless interoperability.  Seamless 

interoperability refers to the ability to transparently pass native types to and from Unicon, 

Figure 8. Flow of transformation within the Junicon interpreter. 

x = 1;

Preprocessor

Java

<PROGRAM>
<STATEMENT>

<ASSIGN>
<EXPRESSION>

<IDENTIFIER>x</IDENTIFIER>
</EXPRESSION>
<OPERATOR>=</OPERATOR>
<EXPRESSION>

<LITERAL>1</LITERAL>
</EXPRESSION>

</ASSIGN>
<DELIMITER ID=";"/>

</STATEMENT>
</PROGRAM>

<xsl:template match="OBJREF">
<xsl:apply-templates select="." mode="normalize">

</xsl:apply-templates> </xsl:template>

Parser

Normalization ࣨ
Transformation ࣝࣥ∘࣮

Unicon

new IconAssign( new IconSingleton( new IconVar(
{->x}, {r->x=r})),  new IconValueSingleton(1)).next();

<xsl:template match="ASSIGN">
<xsl:apply-templates select="." mode="operation">

</xsl:apply-templates> </xsl:template>
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with fields accessed and methods invoked from either side. For example, we would want 

class definitions, variable declarations and simple method invocations such as o.f(x,y) to be 

left largely unchanged in migrating from Unicon to Java, and avoid elaborate reflection 

mechanisms or extensive instrumentation that might hinder interfacing with Java or that 

might preclude optimization. Following the above line of argument, more complicated 

expressions in Unicon that embody nested generator expressions must be reduced to the 

above simple form in a manner that makes iteration explicit. 

To make iteration explicit, we introduce an operator for bound iteration, and 

decompose nested generators into products of such bound iterators.  Consider the following 

example of a primary expression, which involves field reference and indexing in addition to 

function application, and where functions are allowed to be expressions that resolve to 

method references: 

 e(ex,ey).c[ei] 

This can be equivalently reformulated as: 

 (f in ⟦e⟧ࣨ) & (x in ⟦ex⟧ࣨ) & (y in ⟦ey⟧ࣨ) & (o in ! f(x,y)) & (i in ⟦ei⟧ࣨ) & (j in ! o.c[i]) 

where ࣨ denotes the recursive application of the above transformation for flattening 

generators.  In the above rewriting, for each step in the primary from left to right, generator 

expressions have been moved outside into bound iterators, and the pieces of the primary 

chained together using these bindings. The final result of the above expression will be a 

sequence whose values are bound to j.  The ! operator denotes lifting, which reifies a term 

and promotes it to an iterator.  Lifting a variable x turns it into a property with get and set 

methods, i.e., ()-> x and (r)-> x=r, and then wraps it in a singleton iterator, in order to enable 

it to be passed as an updatable reference. Lifting an invocation f(x) takes its closure and 
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delegates iteration to the generator produced by its invocation.  For plain Java methods, 

invocation just promotes the result to a singleton iterator.  Lifting an index c[i] promotes it to 

a singleton iterator that returns an updatable reference. 

The above reformulation, if applied recursively to a more complicated expression, 

extracts implicit generators and makes iteration explicit, reducing the expression to a normal 

form that is free of nested generators.  The remaining residual expressions can then be 

evaluated using mechanisms native to the translation target. Normalization thus aligns 

Unicon with a more conventional semantics for list comprehension and method invocation, 

clarifying its meaning as well as placing it into a form more amenable to native evaluation. 

5.1.1 Formalizing the transformations 

The syntax for the Unicon expressions that are to be normalized is shown in Figure 9.  We 

slightly extend Unicon syntax to incorporate several useful features such as lambda 

expressions and method references using o::m, as well as local declarations within blocks, 

and allocation using new C(e) in addition to Unicon's function-like construction using C(). 

The new construct as well as method references are provided to support accessing native 

Java classes and methods from within Junicon. Primary expressions, which consist of a chain 

of field references, invocation, and indexing, as well as identifiers and literals, are shown in 

the bottom of Figure 9. Primary expressions also include collection literals such as [x,y] and 

[k:v,...] for list and map construction, respectively. Since expressions may evaluate to method 

references, one may also chain method invocations and indexing together, for example, 

f(x)[i](y).  It bears noting that previous semantic treatments [Gudeman 1992, Danvy et al. 

2002] did not explicitly address function application using such method expressions, nor did 

they address propagating generators through the fields in object references.  Thus our 
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formulation of normalization is a step forward in making clear the semantics of generator 

propagation. 

The rewriting rules that reduce primary expressions to normal form are shown in Figure 

10, and define the normalization transform ࣨ.  The rewriting rules are presented in the style 

of Felleisen-Hieb, which uses evaluation contexts to specify where the term rewriting rules 

apply [Wright and Felleisen 1994, Klein et al. 2011, Serbanuta et al. 2009].  A context is a 

term that contains a hole, denoted by ⟦⟧, within which rewrite rules can be applied. Contexts 

are specified by a separate grammar over expressions and values. For example, given a 

context of the form C ::= v(⟦⟧), a pattern of the form C⟦e⟧ matches any program fragment 

Figure 9. Syntax of expressions to be normalized. 

E ::= Control  |  Block  |  Closure  |  Operation  |  Primary 
Control ::= if E1 then E2 [else E3] 
 |  E1 to E2 [by E3]   |  every E1 [do E2] 
 |  while E1 [do E2]  |  until E1 [do E2] 
 |  repeat E  | not E   
 |  suspend E1 [do E2]  |  return [E]  |  fail 
Block ::=    { E1 ; ...; En }   
 |  { local y1[=	E௬ଵ]; …; local ym[=	E௬௠];  E1 ; ...; En} 
Closure ::=  (x1,…,xp)   ->   Block 
Operation ::= E1 & E2 
 |  E1 | E2 
 |  E1 op E2 
 |  op E where op in +, -, =, … 
 |  new Dotname(E1, …, En) 
Primary ::=  identifier | literal 
 |  (E)  |  [E1, ..., En] 
 |  [E௞ଵ:E௩ଵ, ...,	E௞௡:E௩௡] 
 |  E(E1, ..., En) 
 |  E[E1, ..., En] 
 |  E.identifier 
 |  Dotname::identifier 
Dotname ::= identifier  |  Dotname.identifier 

where xi, yi are identifiers, and E, Ei, E௜௝ are expressions. 
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v(e). Rewrite rules of form C⟦e⟧→C⟦e'⟧ then use these patterns to match any occurrence of a 

term v(e), split it into its context v(⟦⟧) and hole e, rewrite e into e', and finally substitute that 

subterm back within the context. Evaluation contexts are powerful in part because they 

specify an evaluation order.  For example, ⟦⟧(e) | v(⟦⟧) will ensure that function names are 

reduced before their arguments. While the above style of context-sensitive term rewriting is 

typically used to capture a full reduction semantics, here it succinctly expresses one stage of 

transformation. 

Figure 10.   Reduction semantics for flattening. 

Expressions and values 
e ::= E extended with  (o in E) & E'   |   !p  
v ::= Name  |  Name.Dotname  |  Dotname::identifier   
Name ::= identifier  |  <identifier>  |  literal  | [v1,...,vn]   // Simple term 
   |  [v௞ଵ:v௩ଵ, ...,	v௞௡:v௩௡]    
p ::= v  |  v(v1,...,vn)  |  v[v1,...,vn]  |  Closure  // Flat primary 

Evaluation contexts for complex primary expressions 
C ::= ⟦⟧	 |  C.e  |  C(e  ,e*)  |  C[e  ,e*]  |  v.C | v(v,*  C  ,e*) | v[C] 
  |  [v,*  C  ,e*]  |  [v:v,*   C:v  ,e:e*]  |  [v:v,*   v:C   ,e:e*] 
M ::= v[⟦⟧]     
P ::= E extended with (o in E), where Primary ::= ⟦⟧  

Reductions to flatten primary expressions 

C⟦e⟧घ → (o in e) & C⟦<o>⟧घ if e is not simple v, and E != ⟦⟧ 
M⟦e, e' ,e*⟧घ → M⟦e⟧घ [e' ,e*]  // Index  c[i, j]→c[i][j] 

P⟦p⟧घ → P⟦!p⟧घ      // Lift primaries 

P⟦new e⟧घ → P⟦new(e)⟧घ     // Synthetic functions 

P⟦e to e' by e"⟧घ → P⟦to(e, e', e")⟧घ  

P⟦(o in !v) & e⟧घ  → P⟦e[ v/<o>]⟧घ  // Optimization 

P⟦(o in ((o' in e') & e))⟧घ  → P⟦(o' in e') & (o in e)⟧घ   

where o, xi, yi are identifiers, vi are simple normalized primaries,   
<x>  = x.deref() is the dereference of a reified variable, and  
!p denotes lifting that reifies p and promotes it to an iterator.  
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Normalization thus flattens nested generators into products of bound iterators, and 

indicates where lifting must occur. In the rewriting rules, lifting is denoted by !p, which 

reifies a normalized term p and promotes it to an iterator, while <x> denotes the dereference 

of a reified variable. The normalization transform in Figure 10 also has rules that change 

certain constructs such as to  that are generator functions into synthetic function invocations, 

so that their arguments can be normalized. Multidimensional indexes are also reduced to 

chains of single index steps.  Lastly, the flattening transforms are optimized to skip the 

creation of bound iterators whenever possible, such as for simple terms in arguments.   

Thus for f(x,e') where x is an identifier, the rewriting rules for normalization yield   

(y in e') & !f(x, <y>). 

For example, the findPrimes method in Figure 2 is normalized as follows: 

 def findPrimes (lower, upper) { 

  local x_0; 

  suspend (!to(lower, upper)) * 

   (x_0 in !to(lower, upper)) & !this::isprime(x_0.deref()); 

  !null 

 } 

As shown in the above example, normalization decomposes only primary expressions such as 

function invocation, and otherwise leaves operators and constructs alone.  This is because 

operators and constructs are later implicitly translated to a map operation, under the 

equivalence: 

 map(*,I,J)  =  (x in I) & (y in J) & ! x*y 

It bears noting that there is a direct correspondence of products of bound iterators to 

monad comprehension.  Monads are a notion from category theory whose map-then-join 

pattern can be instantiated to capture a wide variety of ways to chain together computations 
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[Moggi 1991, Wadler 1990, Wadler 1992]. Using Haskell's  do  notation, where \x->e denotes 

lambda abstraction and >>= denotes the monad bind operator which is the adjunctive form of 

a functor's map followed by join [Hudak et al. 1999], we have the following equivalence: 

 (x in I) & J  =  do { (x <- I) ; J }  =  I >>= \x -> do{J} 

If we further apply the above monadic equivalence to 

 (x in I) & (y in J) & !f(x,y) 

where the lifting operator ! corresponds to the monad unit operation, we derive the bind2M 

operator of [Danvy et al. 2002]. 

5.1.2 A context-free formulation of normalization 

The above formalization of normalization is in the form of a context-sensitive term rewriting 

system, which while succinct does not lend itself to simple implementation. In this section 

we present an equivalent context-free formulation of the normalization transform ࣨ that is 

more easily implemented. 

The equivalent context-free rewriting rules to reduce primary expressions to normal 

form are shown in Figure 11. The normalization transform begins by, for a given program 

consisting of larger expressions such as control constructs and operators, descending into 

primary expressions through a default rule that recurses down through non-primaries 

otherwise leaving them unchanged.  For a non-primary expression or construct c composed 

of terms ti, the rule is a homomorphism over its terms: 

 ⟦c⟨t1,…,tn⟩ ⟧घp   →   c⟨⟦t1⟧घp  ,…, ⟦tn⟧घp ⟩ 
We define ࣮ to analogously leave primaries alone, since they will have already been 

normalized. 
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For a given primary expression, ࣨ then proceeds left to right along the fields and 

arguments inside it, decomposing field references and invocations into separate iterator 

product steps, and extracting complex fields and arguments into bound iterators.  Along the 

Figure 11.   Normalization of primary expressions. 

⟦e⟧घ   → ⟦e⟧घ∅   where e is any expression  // Entry into transforms using empty prefix ⟦c⟨t1,…,tn⟩	⟧घp   → c⟨⟦t1⟧घp  ,…,	⟦tn⟧घp ⟩ 	where c is a non-primary with terms ti 		// Descend into primaries ⟦ex to ey by ez⟧घp  → ⟦range(ex, ey, ez)⟧घp     // Synthetic functions for higher-order generators ⟦new	C(e)⟧घp  → ⟦C.new(e)⟧घp       ⟦e.e'	⟧घp   → (o in ⟦e⟧घp ) & ⟦e'⟧घp	ᇱ   where p'= <o>, the dereference of o // Field reference ⟦e(e')e"⟧घp   → (o in ⟦e⟧घp ) & ⟦<o>(e')e"⟧ऐ  where e"=(e1")…[ei"]… or [e1"]…(ei")… // Invoke ⟦p(e1,...,en)e"⟧ऐ → (x1 in ⟦e1⟧घ∅ ) & ... & (xn in ⟦en⟧घ∅ ) & (o in !	⟦p(<x1>,...,<xn>)⟧ङ) & ⟦<o>e"⟧ऐ    ⟦p(e1... , , ...en )⟧ङ	→  p(e1... , omit , ...en )   where skip last product		if	e"=	∅ ⟦e[e']e"⟧घp   → (o in ⟦e⟧घp ) & ⟦<o>[e']e"⟧ऐ  where e"=(e1")…[ei"]… or [e1"]…(ei")… // Index ⟦p[e1,...,en]e"⟧ऐ → ⟦p[e1]... [en]e"⟧ऐ	  ⟦p[e']e"⟧ऐ → (x in ⟦e'⟧घ∅ ) & (o in ! p[<x>]) & ⟦<o>e"⟧ऐ  where skip last product		if	e"=	∅	  ⟦x⟧घp  → !p.x where x is an identifier in the last field of an object reference // Simple atom ⟦x⟧घ∅  → !x where x is an identifier or literal outside of a complex primary ⟦e::f⟧घp  → ⟦e	⟧घp ::f  // Method reference ⟦[e1,...,en]⟧घp    → (x1 in ⟦e1⟧घ∅ ) & ... & (xn in [en⟧घ∅ ) & ![<x1>,...,<xn>] // List ⟦[ek
1:ev

1,...,ek
n:ev

n]⟧घp  → (k1 in ⟦ek
1⟧घ∅ ) & (v1 in ⟦ev

1⟧घ∅ ) & ... &  // Map 

      (kn in ⟦ek
n⟧घ∅ ) & (vn in ⟦ev

n⟧घ∅ ) & !⟦<k1>:<v1>,...,<kn>:<vn>] 

where !e denotes lifting of a primary expression, which reifies e and promotes it to an iterator, and <e> 
denotes the dereference of a reified variable or value.  Invocation delegates to the returned  
generator; otherwise lifting gives a singleton iterator that yields one result before failing. 

We skip bound iterator creation (o in ⟦e⟧घp ) if e is a simple term consisting of an identifier or literal, or a 
field reference, method reference, or collection literal composed of only simple terms, and just use  
the prefixed original term  p'= p.e  (or p'=e if p=∅) instead of <o> in the above products.  

We skip bound variable creation (o in ⟦e⟧घp ) if ⟦e⟧घp  is a product that ends in an iterator with binding b,  
or is itself such an iterator, and just use ⟦e⟧घp  with p'=<b>  instead of <o> in the above products.     
For example, (o in (b in e)) becomes just (b in e). 

We also skip bound variable creation (o in !p(<x>)) or (o in !p[<x>]) for the last invoke or index step in a 
primary, and just lift the last product term, since there is no further need for chaining.     
For example, x.f(y)[z] → (o in !x.f(y)) & !o[z]. 

Lastly, for efficiency we skip over redundant parenthesis, i.e., ⟦((e))⟧घp   → ⟦(e)⟧घp  , and ⟦(e)⟧घp  → ⟦e⟧घp   
if not inside a primary. 
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way, ࣨ carries the accumulated object reference p, or prefix, to be used as the function or 

collection name in the decomposed invocation and indexing steps. 

The above transforms must be similarly applied to all invocation and indexing 

arguments when there are multiple arguments, for example in 

  e(e1,...,en)    |    e[e1,...,en] 

where multidimensional indexes are first reduced to chains of single index steps.  Moreover, 

to optimize the number of bound iterators, we skip the creation of bound iterators (o in ⟦e⟧घp ) 

if e is a simple term consisting of an identifier or literal, or a field reference, method 

reference, or collection literal composed of only simple terms, and just use the prefixed 

original term p.e instead of <o> in the above products.  We also skip the creation of bound 

iterators if ⟦e⟧घp 	ends in a created iterator, and use its last binding instead of <o>. These 

optimizations avoid synthesizing unnecessary bound iterators, and shorten the chain of 

iterator products. Since lifting only occurs when creating bound iterators, under the above 

optimizations only invoke and index, and simple terms such as identifiers, literals, and 

residual field references and method references that appear outside a primary field or 

argument, are lifted. 

5.2 Composing suspendable iterators 

Once normalization has unraveled nested generators to a conventional form, the task of 

implementing the flattened expressions still remains. A significant problem presented by 

Unicon lies in its wide variety of control constructs and operators, each of which must deal 

with the complexity of implementing suspendable generators. 
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A solution to the above problem is to define a minimal set of operators for composing 

suspendable iterators, called an iterator calculus, into which Unicon expressions and control 

constructs can be translated.  The equational translation of constructs into that basis then 

provides a clear operational semantics for Unicon. 

The next steps in the transformation that embeds goal-directed evaluation into Java are 

thus the translation of normalized expressions into the iterator calculus, and from there 

concretely into Java.  In this section we first define an abstract iterator calculus, then show 

how control constructs are equationally translated into it, and finally concretely map the 

calculus into Java. 

5.2.1 Definition of the iterator calculus 

The iterator calculus distills the essential concepts of goal-directed evaluation, and provides a 

minimal set of operators for composing suspendable iterators. Suspendable iteration refers to 

iteration in which, in addition to next, there is a suspend operation. In a tree of composed 

iterators, suspend will return a value that is propagated up as the result of the root iterator's 

next. The following iteration of the root will then resume at the point of suspension. In the 

absence of composition, suspend is equivalent to next. 

As can be seen from the preceding discussion, product, bound iteration, and lifting are 

the first entries in the calculus needed for normalization, and are sufficient to express lazily 

evaluated list comprehension.  The full calculus for iterator composition is shown in Figure 

12.  It bears noting that map  and forall  are included as convenience mechanisms, and can be 

equivalently expressed using product and reduce, respectively. 

A single Java class, IconIterator, implements the stream-like interface for the iterator 

calculus in a tightly knitted logic that provides iteration that is suspendable, failure-driven, 
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and optionally reversible. While the IconIterator class implements the java.util.Iterator 

interface, it differs in that hasNext() tests for failure of next(), which terminates the iterator.  

After failure, the iterator is then restarted on the following next().  The kernel is optimized to 

statefully resume its point of suspension on a succeeding next(), incurring zero cost for 

suspends. Unlike other language extensions that implement suspend in iterators using 

multithreading, such as can be found for Groovy and Java, in Junicon suspend is tightly 

integrated into the kernel. 

Subtypes of the IconIterator class built using the stream-like operations of the iterator 

calculus are then used as abbreviations for constructs such as while, and serve as the final 

Figure 12.   Syntax of the iterator calculus. 

I ::= I1 & I2 Product:  for i in I1 { for j in I2 } 
| I1 | I2 Concatenation:  {for i in I1}; {for j in I2} 
| Ig -> I1 | I2 Choice: if exists(Ig) iterate over I1, else over I2 
| I* Repeat until produces an empty sequence 
| I:n Limit iterator to at most n results 
| ! p  Lift normalized primary expression 
| x in I Bound iteration 
| reduce op I Combine results from I until it fails 
|   map op I1 I2 Map operator over product of its operands. 
   = (x in I1) & (y in I2) & (! <x> op <y>) 
| forall I Reduce by iterating over I until failure 
| exists I Succeed if non-empty sequence 
| not I  Succeed on failure, and fail on success 
| suspend I Suspend, yielding value from I 
| return I Return exists(I) 
| fail Constant iterator that always fails 

// Normalized primary  
p ::= v  |  v(v1,...,vn)  |  v[v1,...,vn]  |  closure  
closure ::=  (x1,…,xp) -> { local y1;…; local ym;  I } 

where xi, yi are identifiers, vi are atoms, and  
<x>  = x.deref() is the dereference of a reified variable. 
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target of the transformation rules. The transformation that concretely takes the iterator 

calculus into the Java kernel is denoted by ࣥ.  For example, I &J is translated as follows: 

 ⟦I & J⟧क  →  new IconProduct(⟦I⟧क, ⟦J⟧क) 

For operations such as I +J, instead of normalizing the expression into an iterator product 

 (i  in I) & (j  in J) & (k  in ! <i>+<j>)  

which would work, we instead build a map operation into the class performing the iterator 

product, IconIterator, so that it performs the operation at each product pair if the operands 

succeed.  Thus, the operation I +J is translated to: 

 ⟦I + J⟧ ञ → new IconProduct(⟦I⟧क, ⟦J⟧क).map(new IconOperator((x,y)  ->  x+y)) 

although for efficiency we only define operators once. 

The iterator calculus is loosely derived from a combination of functional forms [Backus 

1978], guarded commands such as in GCL [Dijkstra 1975] and CSP [Hoare 1978], and first-

order formulae as found in Z schemata [Abrial et al. 1980, Spivey 1992, Davies and 

Woodcock 1996] and SETL [Dewar et al. 1981, Schwartz et al. 1986]. Unlike typical 

mechanisms for list comprehension, the iterator calculus allows specifying comprehensions, 

i.e., the intensional properties defining a sequence, using the more powerful first-order 

formulae. 

The iterator calculus in many regards bears a striking similarity to the Java Stream 

interface. It differs significantly, however, in its support for suspendable iteration, as well as 

its provision of forms such as repeat and product  that depend on the ability to be restarted. 
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5.2.2 Translation of expressions into the iterator calculus 

The second step in the transformation of Unicon into Java is the translation of normalized 

expressions into the iterator calculus.  The key goal here is to provide an equational 

translation of constructs that clarifies their semantics, is independent of the concrete 

translation target, and reduces the complexity of implementation. 

The iterator calculus provides the basis, that is, minimal spanning set, into which 

control constructs and operations can be translated. Some of the operations in the iterator 

calculus, with the notable exception of lift, reduce, and map, are also primitives in Unicon. 

Other Unicon constructs are transformed into compositions of calculus operators. 

The rules for the transformation ࣮ that translates program expressions into the iterator 

calculus are shown in Figure 13.  As can be seen in the figure, the rules provide an equational 

definition of the semantics of Unicon control constructs.  The equations are defined in terms 

of the calculus's stream-like interface for composing suspendable iterators using functional 

forms such as product, concatenation, and reduce.  After normalization, the transformation 

of expressions thus proceeds by using these equations to replace constructs and operators 

with their equivalent iterator calculus formulae.  As described later, instead of using the 

replacement formulae directly, such formulae are defined once as subtypes of the 

IconIterator class, and then used as abbreviations for the translation of the construct. 

For example, the every  construct corresponds to forall  or reduce, and iterates until 

failure.  The sequence construct, where terms are separated by ";", is equivalently 

transformed into the concatenation of bound expressions, i.e., a singleton iterator with limit 

1, with the result being an iterator over the last unbounded term.  Operations are simply 

transformed into a map over products of the operands.  Lambda expressions, on the other 
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hand, must move any initializers for local declarations into the function body before 

recursively transforming that part of the expression.  Blocks with local declarations similarly 

shift initializers into the sequence body, and are mapped into closures which thus bind the 

returned generator to the local declarations. 

The kernel that implements the iterator calculus also provides a number of built-in 

methods that optimize several of the most frequently occurring calculus expressions.  These 

include forall  that is equivalent to reduce with a don't-care operator.  We also abbreviate 

forall(x :1) as x.bound(), which represents what Icon calls a bounded expression, that is, a 

singleton iterator that runs to failure, here optimized as an iterator that always fails but also 

Figure 13.   Translation of expressions into the iterator calculus. 

Sequence, block, and lambda expression⟦{E1; …; En;Ez}⟧ञ → forall(⟦E1⟧ञ:1  | … |  ⟦En⟧ञ:1)  |  ⟦Ez⟧ञ   ⟦{ local y1=	E௬ଵ;…; local ym=	E௬௠;   E1;...;En }⟧ञ →  
 { () -> local y1;…; local ym;   ⟦{y1 =	E௬ଵ;…; ym=	E௬௠;   E1;...;En }⟧ञ } ( ) ⟦(x1,…,xp) -> { local y1=	E௬ଵ;…; local ym=	E௬௠;   E1;...;En }⟧ञ  → 
 ! (x1,…,xp) -> { local y1;…; local ym;   ⟦{y1 =	E௬ଵ;…; ym=	E௬௠;   E1;...;En;   fail}⟧ञ } 

Control constructs		 // Below  I1;I2  means  forall(I1:1) | I2 	⟦every E⟧ञ → forall(⟦E⟧ञ)  ⟦not E⟧ञ → not(exists(⟦E⟧ञ)) ⟦every Ex do Ey⟧ञ → forall(⟦Ex⟧ञ & (⟦Ey⟧ञ ;fail))  ⟦ fail	⟧ञ → fail ⟦while Ex do Ey⟧ञ → forall((⟦Ex⟧ञ:1 -> (⟦Ey⟧ञ; not(fail):1))*)		 ⟦return E⟧ञ → return(exists(⟦E⟧ञ))  ⟦until Ex do Ey⟧ञ → ⟦while (not Ex) do Ey⟧ञ	 	 ⟦suspend E⟧ञ → suspend(⟦E⟧ञ) ⟦repeat E⟧ञ → forall((⟦E⟧ञ; not(fail):1)*)  ⟦suspend Ex do Ey⟧ञ → (x in ⟦Ex⟧ञ) &  ⟦if Eg then Ex else Ey⟧ञ → ⟦Eg⟧ञ -> ⟦Ex⟧ञ | ⟦Ey⟧ञ    (suspend(!x) ); ⟦Ey⟧ञ ;fail)  ⟦if Eg then Ex⟧ञ → ⟦Eg⟧ञ -> ⟦Ex⟧ञ 

Iterator calculus operators    Operations, e.g. + ⟦Ex & Ey⟧ञ → ⟦Ex⟧ञ & ⟦Ey⟧ञ	 ⟦Ex op Ey⟧ञ → map (op, ⟦Ex⟧ञ, ⟦Ey⟧ञ) ⟦Ex | Ey⟧ञ → ⟦Ex⟧ञ | ⟦Ey⟧ञ	 ⟦op E⟧ञ → map (op, ⟦Ex⟧ञ)   ⟦ (x in E)	⟧ञ → (x in ⟦E⟧ञ)  

Default transforms ⟦!E⟧ञ → !⟦E⟧ञ  ⟦p⟧ञ → p  ⟦c⟨t1,…,tn⟩⟧ञ →  c⟨⟦t1⟧ञ ,…,	⟦tn⟧ञ⟩ // Descend into c composed of terms	ti 
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remembers if it was non-empty. We further optimize the kernel by incorporating direct 

support for such frequently occurring patterns as succeed:1, where succeed  is not(fail), as 

well as exists, which is implemented as always restarting the iterator. 

5.2.3 Concretization of the iterator calculus 

A final step in the translation of expressions is to take the normalized expressions, as well as 

the constructs which have been reduced into the iterator calculus, concretely into Java.  A 

key problem to be solved is to correctly handle lifted terms as well as object reference and 

indexing over reified terms. 

As mentioned previously, the normalization transform ࣨ for primary expressions is 

independent of the transform ࣮ for larger expressions, so as to enable staging them 

separately.  The net transform for taking Unicon expressions into the iterator calculus is thus 

the composition: 

  ࣮ ∘ ࣨ 

and the overall transformation that takes Unicon expressions into Java is the composition: 

 ࣥ ∘ ࣮ ∘ ࣨ 

where ࣥ concretizes the calculus into Java.  Figure 14 shows the transforms in ࣥ that take 

normalized terms in the calculus into the Java kernel that implements it. 

Normalized primary expressions such as invocation and indexing are translated into 

small classes that extend the kernel's IconIterator to perform generator delegation and 

mutable indexing, respectively.  Other primaries such as for variable and field reference must 

handle whether they are reified properties or just plain terms such as for arguments or 

subscripts.  For larger Unicon constructs, such as while, the calculus equations are directly 
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embodied in small classes, e.g., IconWhile, that also extend the kernel's IconIterator.  

Concretization is optimized to avoid redundant nested closure formation and to recognize 

final variables that do not need to be inside closures at all. 

In interactive mode, the transforms slightly alter their behavior to enable execution of 

outermost expressions.  As with class field initializers, a simple expression such as: 

 f(x) 

Figure 14.   Concretization of iterator calculus terms. 

Lift primary to iterator ⟦!	f(e1,…,en)⟧क  → new IconInvokeIterator( ( ) -> ((VariadicFunction) ⟦f⟧क).apply (⟦e1⟧क ,…,	⟦en⟧क )}) ⟦!	c::f(e1,…,en)⟧क	 → new IconInvokeIterator( ( ) -> ⟦c⟧क.f  (⟦e1⟧क ,…,	⟦en⟧क )) ⟦!	c[e]	⟧क → new IconIndexSingleton(⟦c⟧ज	, {-> ⟦e⟧क }) ⟦!	c.new(e1,…,en)⟧क → new IconInvokeIterator({()-> new c(⟦e1⟧क ,…,	⟦en⟧क)}) ⟦!	to(e1, e2, e3)⟧क → new IconToIterator(⟦e1⟧क,	⟦ e2⟧क,	⟦ e3⟧क)  ⟦!	݈⟧क → new IconValueSingleton(݈)   ⟦!	p⟧क → new IconSingleton(⟦p⟧ज)  

Reified primary, with getter and setter ⟦x⟧ज → x_r, if external: new IconVar( ()->x, (rhs)->x=rhs )  ⟦<t>⟧ज → t_r, if inside closure: t_r.get()   ⟦o.x1. … .xn	⟧ज → new IconField(⟦o⟧ज, "x1", …, "xn") ⟦p⟧ज → {()-> ⟦p⟧क}, if inside closure: ⟦p⟧क   

Inside primary, i.e., is function argument, subscript, or field in object reference ⟦x⟧क → x_r.deref(), if external or class field:  x ⟦c::f	⟧क → ⟦c⟧क::f  ⟦<t>⟧क → t_r.deref(), where deref()=get().get() ⟦	݈	⟧क → ݈  ⟦o.x1. … .xn	⟧क → IconField.getFieldValue(⟦o⟧ज, "x1", …, "xn")  or ⟦o⟧क .x1. … .xn  if o is typed ⟦	[e1,...,en]	⟧क → new IconList(⟦e1⟧क,...,	⟦en⟧क)		 ⟦n⟧क → new IconNumber(n)	 ⟦	[ek
1:ev

1,...,ek
n:ev

n]	⟧क	 → new IconMap(⟦ek
1⟧क,⟦ev

1⟧क,...,	⟦ek
n⟧क,⟦ev

n⟧क)    

Calculus operations and control constructs ⟦(t in	I)⟧क  → new IconIn(⟦t⟧ज , ⟦I⟧क)		 ⟦if	I1	then	I2⟧क  → new IconIf(⟦I1⟧क , ⟦I2⟧क) ⟦I1	&	I2⟧क  → new IconProduct(⟦I1⟧क , ⟦I2⟧क)		 ⟦fail⟧क  → new IconFail()  ⟦p⟧क → p // Default transform 

where x and y are identifiers, t is a temporary identifier, p is a normalized primary,  f, c, and e are simple 
normalized primaries, o is a simple identifier or literal or < t >,	݈ is a literal, n is a number, and  
 interface VariadicFunction <T,R> { R apply (T... args); } 
An identifier is an external reference if it is not a class field, method local, parameter, or temporary. 
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is transformed to: 

 ⟦f(x)⟧ क∘ञ∘ࣨ.next() 

which executes the first iteration of the generator. 

There are several other ancillary but simple transformations needed to complete the 

concretization, for example changing collection literals and numeric literals to method 

invocations for list formation and arbitrary precision promotion, respectively.  Method 

invocation must also accommodate the use of method references, further described in the 

following section. 

5.3 Transformation of classes 

When embedding at the class level, a last stage in transformation takes Unicon methods as 

well as class fields into the Java class model. A key problem to be solved is how to support 

interoperability while still accommodating Unicon's reference semantics. As mentioned 

previously, in Unicon, variables and subscripted collections can be passed as updatable 

references, and function names can be used in expressions.  At the same time, Unicon class 

fields and methods need to be exposed in a manner that can be passed to and used by native 

Java methods, and conversely easily access foreign class fields and methods from within 

Unicon. 

Our approach to solve the above problem is to expose variables in both plain and reified 

form, while maintaining consistency between them. Methods are similarly exposed as 

method references in addition to their plain form. This duality allows Java code to use the 

plain form, while embedded Unicon code can use the reified form. Lastly, Junicon is 

carefully designed to preserve native types, i.e., maps, lists, and sets are just their equivalent 
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Java types, so any Java methods can be used on them. Arbitrary precision arithmetic for 

integers, which is the default in Unicon, similarly promotes numeric literals to BigIntegers as 

needed. 

Below we describe the techniques used to transform class fields and methods, as well as 

procedures, into Java in a manner that promotes interoperability.  We denote the 

transformations for classes and methods, as well as procedures, by ࣝ.  Since normalization is 

a separately staged transformation, and since ࣮ and ࣥ are bundled into ࣝ, the net transform 

that takes programs into Java is thus: 

  ࣝ ∘ ࣨ 

As is further described in Chapter 6, the transformations are implemented in two phases of 

XSLT transformation: a normalization stage ࣨ, followed by ࣝ for the transformation of 

classes, methods, and expressions. 

Unicon methods have a few differences from Java that must be accommodated in 

translation. Overall Unicon classes are roughly similar to those of Java, in that they are 

composed of fields and methods, albeit with relaxed typing and with the exception that 

multiple inheritance is allowed. However, each method can take any number of arguments, 

i.e., it is variadic.  Method arguments may also be omitted in invocation even if they are 

interior, e.g., f(x,,y), in which case they are null or resolve to parameter defaults, as well as 

superfluously supplied, in which case they are ignored. Each method thus has arbitrary arity, 

which precludes method overloading, and as a consequence each method has a unique name 

within its class. Unicon also has a scoping model in which variables that are not declared and 

are unresolved at link time are made local to a method or procedure. Unicon thus treats 

unresolved references as method locals. While the transforms faithfully preserve other 
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features in Unicon, the linking model in its deferred scoping of locals is an exception, due to 

its incompatibility with Java. 

In contrast to Unicon, Junicon follows the Java package model and its scoping rules, so 

that all variables must be imported or declared. Multiple inheritance is not allowed: instead, 

interfaces, while not directly expressible in Junicon, can be used by embedding into a Java 

class that implements them. Junicon also extends Unicon syntax to allow a familiar Java-like 

block notation for classes and methods. While either Unicon-style or Java-style notation is 

allowed as input to the interpreter, a preprocessing step aligns any Unicon-style notation with 

the Java-like syntax before transformation. For simplicity, the examples and transformation 

rules that follow use the Java-style block notation that exists after preprocessing. 

5.3.1 Exposing fields in both plain and reified form 

In order to enable interoperability under embedding, field declarations as well as method 

parameters are preserved as plain variables, and then also exposed in reified form. For 

example, a field declaration in Junicon is transformed as follows: 	 ⟦		local x; ⟧ऍ  → 

   Object x; // Exposed field, with reified form below 

   IconVar x_r = new IconVar(()->x, (rhs)->x=rhs); 

The IconVar implementation maintains consistency between the reified and plain forms, so 

that Java methods can use the exposed class fields, while internally operations can use the 

reified variable. Moreover, any explicitly typed variables are carefully carried forward into 

derived reified variables and method parameters, so as to enable field reference without 

reflection when possible, as well as their use in natively typed Java methods. The actual 

types stored in variables are carefully chosen to be normal Java types, specifically those used 
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by Groovy, for example ArrayList, LinkedHashMap, and LinkedHashSet, as well as 

numeric types such as BigInteger to support arbitrary precision arithmetic, which is the 

default in Unicon. 

5.3.2 Exposing methods as variadic lambda expressions 

The transformations must also accommodate the use of function names in expressions.  As 

mentioned, in Unicon methods are variadic, i.e., they take any number of arguments.  A 

naive approach to accommodate the use of function names in expressions would be to simply 

take Unicon methods into fields bound to variadic lambda expressions that return iterators. 

Under translation to Groovy, the above approach works flawlessly. However, under 

translation to Java, two problems arise.  First, forward references are not allowed inside 

lambda expressions, nor to fields holding them.  To handle this restriction, methods are 

defined as plain methods, and then also exposed as method references with the same name. 

Method definitions are thus transformed as follows: 

 ⟦	method M(x,y) { body } ⟧ऍ  → 

   Object M = (VariadicFunction) this::M; 

   Object M (Object... args) { ⟦ body ⟧ग } 

where ग denotes the translation of the method body. 

Second, invocation must then accommodate the use of such method references for 

function names.  Again, under Groovy, this is not a problem, since invocation of a closure 

transparently uses the same notation as if it were a method, e.g., f(args). However, as 

mentioned previously, in Java the use of such method references, which are treated as lambda 

expressions, must be made explicit. This is because invocation using lambda expressions 

does not use the same syntax as for method invocation, as it might otherwise if function types 
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had been introduced in Java. Rather, in Java, a lambda expression resolves to an instance that 

implements an interface with a single method, called a functional interface. Invocation using 

lambda expressions, or variables that hold lambda expressions, must thus use a field name, 

for example f.apply(args), instead of f(args). Since Unicon methods are exposed as variadic 

lambda expressions, invocation when translated to Java becomes: 

 ⟦	M(x)	⟧क  →  ((VariadicFunction) M).apply(x) 

However, the artificially injected method name in turn poses a problem when invoking 

native Java methods. The problem that must be addressed is how to differentiate the 

invocation of native Java methods from other Unicon methods, given that the latter 

invocation is assumed to use a functional interface.  In the general case the function name 

used in an invocation may refer either to a Unicon method, or to a Java method in external 

code. In the former case the name resolves to a lambda expression, while in the latter case the 

name resolves to a plain method.  One solution to differentiate the invocation of lambda 

expressions from that of plain methods is to make explicit the use of non-Unicon Java 

methods. 

We thus explicitly distinguish the invocation of plain Java methods from Unicon 

methods using ::, which is translated through the rewriting rule: 

 ⟦	o::M(x) ⟧क  →  o.M(x) 

When embedding in Groovy, however, since method references are treated as function types, 

the transforms bypass the use of functional interfaces, which provides full transparency when 

calling Java methods from within Unicon. 

The above technique of defining methods in both plain and reference form also 

supports interoperability when calling Unicon methods from within Java.  Because the 
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plainly defined methods are variadic over plain arguments and return a Java Iterator, they can 

be used from within Java, while internally expressions can use the method references.  Thus 

bidirectional interoperability, analogous to that for fields, is also provided for methods. 

The alternative to making Java invocation explicit is to scope up through class 

definitions to resolve whether external references are to Java or Unicon, since they treat 

method invocation differently.  While such a technique is feasible, our strategy has been to 

purposefully avoid such resolution, since it replicates many details of the Java compiler for 

handling types and mutual dependencies.  Such added complex resolution techniques must 

also be maintained to track the evolving Java type system, and so the risk outweighs the 

minor benefits. 

5.3.3 Exposing constructors as method references 

Another key problem in the translation of Unicon to Java is how to map Unicon procedures 

into the Java class model.  In particular, procedures, which are akin to methods bound to a 

global variable, are updatable entities.  In addition we need to support Unicon's provision of 

function-like class instantiation using C(x) instead of new C(x), a style similar to that later 

adopted by Python.  A solution to the above problems is to map procedures as well as 

constructors into static fields with the same name as the class.  These fields are then made 

visible in scope using import static C.C.  Support for function-like class instantiation, e.g.  

C(x) instead of new C(x), is realized using static fields that wrap the original constructor: 

 public static VariadicFunction  C = ⟦(x) -> {new C(x)}⟧क 

Procedures, such as 

 procedure P(x) {body} 
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are similarly transformed to: 

 public static Object		⟦P(x) {body}⟧ग		 
where ग transforms a method into Java.   

5.3.4 Formalizing the transformations for classes 

Figure 15 illustrates the above transformations for classes and methods as well as procedures.  

The class declaration proper translates fairly directly to a Java class.  Field declarations 

within classes are preserved as plain fields, and their reification separately encoded, so as to 

enable integration with Java. The treatment of methods as fields bound to lambda expressions 

similarly enables their use as references in generator expressions. However, field initializers, 

having been transformed to generators, must be unraveled after transformation using next() 

so as to yield a value for assignment.  

The bottom of Figure 15 illustrates the concretization ࣥ of methods and lambda 

expressions into variadic functions that return iterators. Recall that method invocations were 

normalized to iteration over a returned generator as follows: 

 e(e',e") -> (f in e) & (x in e') & (y in e") & (o in !f(x,y)) 

Method definitions must thus return an iterator, and so are transformed to a generator 

function via ग: 

 ⟦ M(x,y) { local z=e; body }⟧ग → ⟦ M(x,y) { local z;  ⟦{z=e;  body;  fail}⟧	ञ	}⟧क  

Both methods and lambda expressions are then made variadic by ࣥ in a manner that supports 

argument omission and parameter defaults.  Method locals are ensured to be effectively final 

by encapsulating them as a reified variable that holds its own value.  As with block 

declarations, local variable initializers must be incorporated into the sequence body before 
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further transformation. Lambda expressions as well as block declarations must also 

synthesize local declarations for temporaries used in bound iterators. 

Figures 16 and 17 show the results of preprocessing, normalization, and transformation 

for an example program.  The program in Figure 16 generates the values between 1 and an 

upper bound, and interfaces with the Java println method to effect printing.  In Figure 16, the 

original Unicon program is shown on the top left, and the program after preprocessing and 

Figure 15.   Transformation of methods using variadic lambda expressions. 

Procedures ⟦procedure P(x) {    → class P { 
 local z=e; body   public static Object P = (VariadicFunction)  
}⟧ऍ       (Object... args) -> P(args);  // Method reference 
     public static Object		⟦P (x) { local z=e; body }⟧ग	 // Plain form 
    }  import static P.P; 

Classes ⟦class C:E (field) { → class C extends E {  
 local i=e;    public Object M = (VariadicFunction) this::M;  // Method 
 method M(x) { local z=e; body } public Object  field; // reference 
}⟧ऍ     IconVar  field_r = new IconVar(()->field, (rhs)->{field=rhs}); 
     public C() { super();  initially() } // Constructors  
     public C(field) { super();  this.field=field;  initially() } 
     public static VariadicFunction  C = ⟦(x) -> {new C(x)}⟧क 	
     public Object  i=⟦e⟧	क∘ञ.next(); // Reified fields 
     IconVar  i_r = new IconVar(()->i, (rhs)->{i=rhs}); 
      public Object		⟦M (x) { local z=e; body }⟧ग  // Plain methods 
    }  import static C.C; 

Methods and lambda expressions ⟦ (x,y) -> { local z=e; body}⟧ख → ⟦ (x,y) -> { local z;  ⟦{z=e;  body;  fail}⟧	ञ	}⟧क	 // Lambdas	⟦ (x, y=d, o[]) -> {local z; bodyञ}⟧क → (Object...  args) -> { // Concretization 
  IconVar  x_r = new IconVar();   IconVar  y_r = new IconVar(); // Parameters  
  IconVar  o_r = new IconVar();   IconVar  z_r = new IconVar();  // Locals 
  if (args == null) { args = omit.getEmptyArray(); }; // Unpack parameters 
  x_r.set((args.length > 1) ? args[1] : null); // Can omit argument 
  y_r.set (((args.length > 2) && (args[2] != omit)) ? args[2] : d); // Has default 
  o_r.set((args.length > 3) ? Arrays.asList(args).subList(3,args.length) :new ArrayList()); 
  return ⟦bodyञ⟧क; }  ⟦ M(x,y) { local z=e; body }⟧ग → ⟦ M(x,y) { local z;  ⟦{z=e;  body;  fail}⟧	ञ	}⟧क	 // Methods	⟦ M(x, y=d, o[])  {local z; bodyञ}⟧क → M(Object...  args) {Same as lambda concretization} 
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normalization are shown in the middle and bottom, respectively.  Preprocessing, in addition 

to handling directives for conditional compilation and source inclusion, also inserts 

semicolons and braces to align programs with a Java-style block notation that simplifies the 

recognition of parseable statements.  Normalization, as shown in the bottom of Figure 16, 

then flattens nested generators into products of bound iterators, and indicates where lifting 

must occur. 

The Java result after the transformation ࣝ is then shown in Figure 17. The 

transformation of classes can be seen to expose methods as method references assigned to a 

class field with the original method name. After translation to Java, the function body itself is 

an iterator constructor, so that the function when invoked will return an iterator.  For 

optimization the iterator body is cached in a stack upon method return, and then reused. 

Since Unicon methods are variadic, the signature of the exposed method, shown at the top of 

Figure 17, is a variadic lambda expression that returns an iterator. 

Figure 16.   Normalization of a sample program. 

class C(lower) Original program 
 method printRange (upto) 
  local i 
  every (i = C().range(lower,upto)) do 
    System.out::println(i) 
 end 
 method range (from,bound) … end 
end 

class C(lower) { After preprocessing 
  method printRange (upto) { 
        local i; 
        every (i = C().range(lower,upto)) do 
    System.out::println(i); 
  } 
  method range (from,bound) { … } 
} 

class C(lower) { Normalized program
 method printRange (upto) { 
  local x_0; 
  local i; 
  every (!i = (x_0 in !C()) & 
     !x_0.deref().range(lower, upto)) do
   !System.out::println(i); 
  !null 
 } 
 method range (from,bound) { ... } 
} 
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As another example, Figure 18 shows the results of applying the above transformations 

to the findPrimes  method defined in Figure 3.  The example demonstrates how the Junicon 

interpreter can accept a familiar Java-style block notation, in addition to the original Unicon 

Figure 17.   Transformation of the sample program to Java. 

public class C { 
MethodBodyCache methodCache=new MethodBodyCache();  
// Method references 
public Object printRange=(VariadicFunction) this::printRange;   
public Object range = (VariadicFunction) this::range; 
// Constructor fields 
public Object lower;    
IconVar lower_r = new IconVar(()-> lower, (r)-> lower=r); 
// Constructors 
public C() { ; }   
public C(Object lower) { this.lower = lower; } 
public static VariadicFunction C= (Object... args) -> {  
  if (args ==  null) { args  = IconEnum.getEmptyArray();}; 
  return new C((args.length > 0) ? args[0] : null); }; 
// Methods  
public Object printRange (Object... args) {  
 // Reuse method body 
 IconIterator body =methodCache.getFree("printRange"); 
 if (body != null) { return body.reset().unpackArgs(args); }; 
 // Parameters, temporaries, and locals 
 IconVar upto_r = new IconVar().local(); 
 IconTmp x_0_r = new IconTmp();  
 IconVar i_r = new IconVar().local();  
 // Unpack parameters 
 VariadicFunction unpack = (Object... params) -> {  
   if (params ==  null) { params = EmptyArray(); }; 
   upto_r.set((params.length > 0) ? params[0] : null); 
   i_r.set(null);   return null;  }; 
 // Method body 

body = new IconSequence(new IconEvery((new IconAssign().over(new IconSingleton(i_r), 
new IconProduct(new IconIn(x_0_r,  new IconInvokeIterator(()->  
((VariadicFunction) C).apply())), new IconInvokeIterator(()-> ((VariadicFunction) 
IconField.getFieldValue(x_0_r, "range")).apply(lower, upto_r.deref()))))),  
new IconInvokeIterator(()-> System.out.println(i_r.deref()))),  new IconValueSingleton(null), 
new IconFail()); 

 // Return body after unpacking arguments  
 body.setCache(methodCache, "printRange"); 
 body.setUnpackClosure(unpack).unpackArgs(args); 
 return body; 
} 
public Object range (Object... args) { ... } 

} 
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syntax. Lambda expressions and iterators can thus be seen to be the building blocks of the 

transformations, as well as of the implementation of the iterator calculus for composing 

suspendable generators. 

5.4 Synthesis of co-expressions and generator proxies 

To support concurrent generators, the transformations also synthesize co-expressions as well 

as multi-threaded generator proxies.  For co-expressions as well as their multithreaded 

proxies, the local environment is shadowed as described in Chapter 4, which requires 

textually scoping up for referenced locals and creating a lambda expression around the 

Figure 18.   Transformation of the findPrimes  method to Java. 

MethodBodyCache methodCache = new MethodBodyCache(); 
public Object findPrimes = (VariadicFunction) this::findPrimes; 
public IIconIterator  findPrimes (Object... args) { 
 // Reuse method body 
 IconIterator body = methodCache.getFree("findPrimes_m"); 
 if (body != null) { return body.reset().unpackArgs(args); }; 
 // Reified parameters 
 IconVar lower_r = new IconVar().local(); 
 IconVar upper_r = new IconVar().local(); 
 // Temporaries 
 IconTmp x_0_r = new IconTmp(); 
 // Unpack parameters 
 VariadicFunction unpack = (Object... params) -> { 
  if (params ==  null) { params = EmptyArray; }; 
  lower_r.set((params.length > 0) ? params[0] : null); 
  upper_r.set((params.length > 1) ? params[1] : null); 
  return null; 
 }; 
 // Method body 
 body = new IconSequence(new IconSuspend(new 

IconOperation(IconOperators.times).over((new IconToIterator(lower_r, upper_r)), new 
IconProduct(new IconIn(x_0_r, new IconToIterator(lower_r, upper_r)), new 
IconInvokeIterator(()-> this.isprime(x_0_r.deref()))))), new IconNullIterator(), new IconFail()); 

 // Return body after unpacking arguments  
 body.setCache(methodCache, "findPrimes_m"); 
 body.setUnpackClosure(unpack).unpackArgs(args); 
 return body; 
} 
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generator that isolates these locals.  Code for co-expression as well as proxy creation is then 

generated, invoking the suspendable iterator runtime.  In the latter area, a single core class, 

IconCoExpression, provides a unified model for handling first-class generators as well as 

co-expressions and multithreaded proxies, and provides support for activating co-

Figure 19.   Transformation of concurrent generators to Java. 

MethodBodyCache methodCache = new MethodBodyCache(); 
public Object spawnMap = (VariadicFunction) this::spawnMap; 
public IIconIterator spawnMap (Object... args) { 
 IconIterator body = methodCache.getFree("spawnMap_m"); // Reuse method body 
 if (body != null) { return body.reset().unpackArgs(args); }; 
 IconVar f_r = new IconVar().local();      // Reified parameters 
 IconVar chunk_r = new IconVar().local(); 
 IconTmp x_1_r = new IconTmp();      // Temporaries 
 IconTmp x_0_r = new IconTmp(); 
 VariadicFunction unpack = (Object... params) -> {    // Unpack parameters 
 if (params ==  null) { params = IIconAtom.getEmptyArray(); }; 
 f_r.set((params.length > 0) ? params[0] : null); 
 chunk_r.set((params.length > 1) ? params[1] : null); 
 return null; 
 }; 
 // Method body 
 body = new IconSequence(new IconSuspend( new IconProduct(new IconIn(x_1_r, ( 
  new IconCoExpression( (Object... args_2) -> { 
   IconVar chunk_s_r = new IconVar().local();   
   IconVar f_s_r = new IconVar().local(); 
   VariadicFunction unpack_4 = (Object... params) -> { 
    if (params ==  null) { params = IIconAtom.getEmptyArray(); }; 
    chunk_s_r.set((params.length > 0) ? params[0] : null); 
    f_s_r.set((params.length > 1) ? params[1] : null); 
    return null; 
   }; 
   IconIterator body_3 = new IconProduct(new IconIn(x_0_r,  new IconPromote(chunk_s_r)),  

 new IconInvokeIterator(()-> ((VariadicFunction) f_s_r.deref()).apply(x_0_r.deref()))); 
   body_3.setUnpackClosure(unpack_4).unpackArgs(args_2); 
   return body_3; 
  },  () -> { return IconList.createArray(chunk_r.deref(), f_r.deref()); }).createPipe())),  
    new IconPromote(x_1_r))), new IconNullIterator(), new IconFail()); 
 // Return body after unpacking arguments  
 body.setCache(methodCache, "spawnMap_m"); 
 body.setUnpackClosure(unpack).unpackArgs(args); 
 return body; 
} 
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expressions, i.e., switching between coroutines, as well as thread creation and 

communication using blocking queues. 

Figure 19 shows the result of applying the above transformations to a simple method 

for spawning a data-parallel computation using concurrent generators.  The method in 

Junicon before translation is as follows: 

 def spawnMap (f, chunk) { 

  suspend ! (|> f(!chunk)); 

 } 

In Figure 19, in the method body, transformation has unraveled generator expressions into 

the composition of iterators using forms such as product, embodied in IconProduct  as well 

as similarly named classes for operations and function invocation.  As can be seen in Figure 

19, spawning a thread for a co-expression is transformed into an IconCoExpression 

constructor over a closure for invoking f that first copies the referenced local environment, 

chunk.  The IconCoExpression  then handles the ancillary mechanics of creating the thread, 

activating the closure within it, and coordinating the communication of results using blocking 

queues. Thread creation and allocation leverage Java’s facilities for thread pool management 

and support for multi-core execution. As with other transformed methods, the signature of 

the exposed method, shown at the top of Figure 19, is a variadic lambda expression that 

returns an iterator.  
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Chapter 6. Implementation 

6.1 Structure of the transformational interpreter 

To demonstrate the utility of the approach, we implemented the transformations for 

embedding Unicon into Java as well as its dynamic analogue Groovy, and housed them 

within a generic interpretive harness. A key aspect of providing support for multiple 

languages lies in the structure of the harness itself.  The harness provides a cascading set of 

interpreters that at each stage transforms its input and either executes it on a script engine, 

such as for Groovy, or chooses another interpreter to pass to for further transformation. The 

steps involved in each stage of transformation are broken down into preprocessing, followed 

by parsing either for surface statement detection or into a decorated XML syntax tree, then 

normalization and translation, and lastly either dispatching to another transformational 

interpreter or piping into a substrate for execution. In particular, the outermost instantiation 

of the harness is a meta-interpreter that detects the embedded language and its context using 

scoped annotations, and dispatches statements to the appropriate sub-interpreter for 

transformation. 

Figure 20 precisely defines the steps involved in transformational interpretation.  In 

detail, the steps involved in transformation begin with a chain of preprocessors that 

accumulate a complete statement from the history of input lines, shown in Figure 20 in 

evalLine.  The next steps are to parse the input into a decorated XML syntax tree, followed 

by normalization and translation transforms.  The chooseDelegate  method then decides to 

whom to delegate the result, for example selecting an interpreter based on the input language.  

Lastly, the transformed expression is either dispatched to another interpreter for further 
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transformation, or deconstructed and piped into a substrate such as a script engine.  The API 

(Application Programming Interface) for the stages in transformational interpretation is 

provided in Appendix 1.   

The interpreter harness allows different transformation technologies to be used, so that 

the exact mechanics used for transformation, as well as the transformations themselves, can 

be customized. The harness also supports pluggable execution substrates, as well as the 

cross-correlation of error messages back to the original source. 

6.2 Configuring the transformational interpreter 

The Junicon interpreter is an instantiation of the above harness implemented in Java, 

customized with a preprocessor, a Javacc LL(k) parser [Reis 2011] for Unicon that emits 

XML, parameterized XSLT transforms for normalization and translation to either Java or 

// Accumulate a complete statement from input history 
evalLine (line, context) {  
 while (null != (unit = getParseUnit(line, context))) { 
  eval(unit, context); 
 } 
} 

// Parse, transform, and dispatch or execute statements 
eval (input, context) { 
 parsed = decorate(parse(input)); 
 transformed = transform(normalize(parsed)); 
 dispatchTo = chooseDelegate(transformed); 
 if (this == dispatchTo) {  
  executeOnSubstrate(transformed, context); 
 } else { 
  dispatchTo.evalLine(transformed, context); 
 } 
} 

Figure 20.   Definition of the transformational interpreter. 
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Groovy, and a Java kernel that implements the stream-like interface for composing 

suspendable iterators.  The complete syntax for Junicon used by the LL(k) parser is provided 

in Appendix 2. These four pieces of customization amount to roughly 17,400 lines of code: 

2300 lines for the parser using Javacc declarations, 5300 lines in XSLT for the transforms, 

and 9800 lines in Java for the runtime kernel. Each component is carefully engineered to be 

capable of being run standalone.  Together they fully define the transformation of Unicon 

into both Java and Groovy. The interpreter proper, which provides the interactive capability 

for transformation and execution on the Groovy script engine, amounts to roughly an 

additional 7100 lines of Java code. 

Behavior of the Junicon interpreter can be rapidly customized through Spring 

dependency injection [Walls 2011], as well as through the XSLT transforms and a prelude 

that allows extensions to the kernel.  Dependency injection is a type of inversion of control 

where the instances on which a class depends are injected from outside via setters rather than 

created by invoking constructors, and are typically referenced using interfaces. Dependency 

injection is a powerful technique for software development that isolates implementation from 

specification, and so improves modularity. Spring uses such a technique to wire together 

class instances and their dependencies, as well as to specify their properties, through 

declarations in an XML configuration file.  In Junicon, a Spring configuration file is used to 

specify how to transform Unicon constructs, operations, functions, and keywords, as well as 

how to map them to methods in the runtime kernel.  In addition, the Spring configuration file 

for Junicon specifies the exact grammars and XSLT transformations to use.  A subset of the 

Spring configuration file for Junicon is provided in Appendix 3. 
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Another widely adopted technology for configuration and extensibility used by Junicon 

is the Maven build tool. Maven is a declarative tool for building Java projects that is driven 

by an XML configuration file. Maven is declarative in that the configuration file describes 

what artifacts and versions are to be built, and the dependencies among them, but not how to 

build them. The exact plug-ins used to perform the build process are fetched from distributed 

repositories, and used in conjunction with dependency inference mechanisms to compile and 

package all required code artifacts. 

In Junicon, Maven is used to compile and package the interpreter for both Windows 

and Linux, as well as the runtime iterator kernel used by compiled Junicon programs. The 

packaging is novel in that the entire Junicon binary distribution is one executable file.  For 

Windows the packaging consists of the concatenation of a small binary executable (.exe), 

followed by a shell script (.bat), and finally appended with the Junicon interpreter and 

runtime in a single Java jar file. On execution, the generic front-end executable finds and 

runs the embedded script in-memory with the command-line arguments, which in turn 

invokes Java with the Junicon jar file to perform either interactive interpretation or 

translation.   For Linux the packaging is analogous to that of Windows but a bit simpler, and 

consists of a small shell script, followed by the jar file for the Junicon interpreter and 

runtime. The above technique works because Windows executables and Linux shell scripts 

load from the front, while zip files, of which jar files are a subset, load from the back.  Thus, 

at each phase of execution, from running the front-end script to running Java on the Junicon 

jar file, execution just operates on itself, the original conjoined file. 

A similar technique is used by the Junicon interpreter to package its own compiled 

programs to run under Java in a standalone manner. A program that embeds Junicon into 
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Java is first transformed into Java, and then compiled into a jar file that depends only on the 

Junicon runtime. A single executable file is then formed for either Windows or Linux by 

concatenating the Windows executable loader or Linux bash script, respectively, with the 

merged compiled program and Junicon runtime. The result is a standalone executable jar file 

that runs the embedded Junicon program in conjunction with the conjoined Junicon runtime.  

The latter is quite small, at about 150K, and depends only on core Java libraries in the 

standard distribution of the Java Runtime Environment. 

As another means to facilitate ease of use, the Junicon interpreter also provides an 

option to choose a Java-style syntax (-J) for the embedded Junicon.  In detail, such syntax 

uses = instead of :=, == instead of ===, and also allows def  to be used instead of method or 

procedure, as well as var  to be used instead of local. The above redefinitions are 

implemented using the capabilities of the preprocessor to perform token substitution. The 

above technique allows embedding generators using a familiar notation that is consistent with 

the surrounding Java. 

6.3 Supported features 

The implementation currently supports all Unicon operators, data structures, and control 

constructs, and four-fifths of the built-in Icon functions. In particular, full support is provided 

for co-expressions and threads, as well as all operators for thread communication using 

blocking channels. Thread creation and coordination leverages the Java facilities for 

concurrency including thread pool management and multi-core execution. Support is also 

provided for string scanning using the subject ? expr operator, which performs scanning 

operations on the subject. In the area of Icon functions, 77 out of 91 functions are 

implemented, including all mathematical functions, all collection functions, all system 
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functions except errorclear and getenv, all file functions except chdir and kbhit, all string 

functions except detab and entab, and 3 of the 11 reflective functions, i.e., copy, image, and 

type.  In the area of Icon keywords, 13 out of 41 keywords are implemented, including 

&subject and &pos for string scanning, &current, &source, and &main for co-expressions, 

&input and &output for file operations, and the core &fail and &null keywords. 

However, Junicon does not support the multiple inheritance provided by Unicon, for 

reasons of consistency with Java, as well the practical difficulty in transformation posed by 

the need to resolve class dependencies. Although multiple inheritance could feasibly be 

supported when embedding into Groovy using Groovy mixins, it is more difficult when 

embedding into Java. The difficulty arises principally from the need to scope up through 

external class bytecode definitions to find the mixins, and then integrate them through 

delegation. As with recognizing and differentiating plain Java method invocation from 

Unicon method invocation, our strategy has been to purposefully avoid such resolution. As 

an alternative to multiple inheritance, interfaces can be used within Junicon by embedding 

into a Java class that implements, i.e., extends, them.  Concomitantly, interfaces for Junicon 

methods can be defined directly in Java using the signature of a variadic function over 

Objects.  All other features of Unicon classes are, however, supported at the level of fields, 

methods, and constructors. This support enables embedding generators into the familiar 

object-oriented setting of Java, as well as the full-fledged transformation of entire Unicon 

classes. 

By enabling embedding within either Groovy or Java, the interpreter can function both 

interactively and as a tool that can emit its output for compilation that is free of dependencies 

on Groovy. The provision for interactive execution significantly enhances the ability for 
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exploration as well as rapid prototyping and refinement within an iterative development 

methodology.  Moreover, at a meta-level, the capability for scripted customization of the 

interpreter itself enables rapid prototyping of translation enhancements. Indeed, the Junicon 

kernel was initially prototyped in Groovy, and later refined into Java to provide improved 

performance. 

6.4 Using XSLT for program transformation 

There are a variety of transformation technologies that could be used to implement the 

rewriting rules derived in the previous chapter. These technologies include program 

transformation systems such as Stratego/XT [Bravenboer et al. 2008] and Spoofax [Kats and 

Visser 2010], as well as metaprogramming support in languages such as Groovy [Dearle 

2010].  However, our techniques do not demand capabilities for ad-hoc syntactic extension, 

nor demand the power or formality of full-fledged transformation tools. 

As part of this research we explored the utility of using XSLT as an alternative means 

of program transformation. XSLT is a rule-based language for transforming XML documents 

expressed in XML itself [Kay 2008, Clark 1999, Clark and DeRose 1999]. An XSLT 

transform consists of a set of templates, or production rules, whose preconditions are XPath 

patterns and that substitute the specified content for any matched XML node.  The 

production rules can be grouped into modes as well as prioritized to effect specific rewriting 

strategies. 

For illustration, two rewrite rules that create local declarations for all temporary 

variables in bound iterators within a given block scope are shown in Figure 21.  The XSLT 

templates in Figure 21, in an extremely succinct fashion, only create local variable 
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definitions for temporaries that appear within a block but not in any subordinate block, i.e., if 

the temporary and block have the same block ancestor count.   

We found XSLT to be remarkably expressive in capturing context, for example looking 

up or down in scope to resolve references, as well as in prioritized rewrite strategies. While 

XSLT was found to be effective in this small-scale scenario – the transformations for all of 

Junicon are less than 5300 lines – its verbosity and lack of formal basis may hinder its 

scalable application to other domains.  On the other hand, XSLT is standardized and its 

Version 1.0, which we use, is bundled into the standard Java runtime environment. For our 

purposes, which is migration between high-level languages, it was found to be highly 

advantageous. 

The transformations for taking Unicon into Java, formalized as rewrite rules in Chapter 

5, are implemented in two stages of XSLT transformation: a normalization stage ࣨ, followed 

Figure 21.   XSLT template for synthesizing temporary variables. 

<xsl:template match="BLOCK"  mode="findTemporaries"  priority="2"> 
 <xsl:copy> 
  <xsl:copy-of select="@*"/> 
  <xsl:variable name="blockDepth" select="count(ancestor-or-self::BLOCK)"/> 
  <xsl:apply-templates select=".//EXPRESSION[@isTemporary and 
   ($blockDepth = count(ancestor::BLOCK))]"  mode="createLocal"/> 
  <xsl:copy-of select="*"/> 
 </xsl:copy> 
</xsl:template> 
 
<xsl:template match="*"  mode="createLocal"  priority="2"> 
 <xsl:param name="variableName" select="@tmpVariableName"/> 
 <STATEMENT>  
  <KEYWORD>local</KEYWORD> 
  <DECLARATION> 
   <IDENTIFIER> 
    <xsl:value-of select="$variableName "/> 
   </IDENTIFIER> 
  </DECLARATION> 
  <DELIMITER ID=";"/> 
 </STATEMENT> 
</xsl:template> 
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by ࣝ for the transformation of classes, methods, and expressions. The XSLT templates, i.e., 

the transformation rules, are further partitioned into modes for each of the transforms ࣨ, ऐ 

within ࣨ, ࣥ, and ࣝ. The XSLT templates faithfully reproduce the rewrite rules previously 

described. 
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Chapter 7. Evaluation 

Performance is not the primary goal of the Junicon implementation. Rather the concerns of 

seamless interoperability, compactness, and semantic clarity are paramount.  However, 

reasonable performance comparable to that of Unicon is desirable, and an implementation 

with a slowdown on an order of magnitude would be of little practical use. To evaluate the 

practical viability of the techniques for embedding Unicon in Java, measurements of 

compiled Java translations were undertaken, and compared to that natively run under Unicon. 

In addition, the performance of suspendable iteration over time was measured when 

embedding in Groovy as well as when embedding in Java. Lastly, the performance of 

embedded concurrent generators was evaluated against equivalent Java stream-based 

programs. 

7.1 Performance relative to Unicon 

The performance of Junicon relative to that of Unicon was benchmarked using a suite of 

eight programs, most of which were derived from the Computer Language Benchmarks 

Game [BenchmarksGame 2015]. The programs exercise a wide range of Unicon features, 

and include Matrix Multiply, PiDigits, Quicksort, N-body, Mandelbrot, Spectral Norm, and 

Fannkuchen, as well as NewInstances from the pybench benchmark suite.  The Java 

Microbenchmarking Harness (JMH) was used in measuring Junicon's performance on an 

AMD Dual-Core Opteron 2212 with 8GB of memory running Linux Mint 17.1, with 20 

warmup iterations and 20 test iterations of 5 minutes each.  Sample sizes for each program 

were chosen to uniformly yield the same execution time.  The results were then compared to 

execution times under Unicon using an identical number of warmup and test iterations. 
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Figure 22 shows the relative performance of Junicon when translated to Java.  

Execution time is normalized with respect to that of Unicon. Confidence intervals at 99%, 

shown by whiskers at the top of the histogram bars, showed negligible variance.  The results 

showed that Junicon yields only marginally worse, and sometimes better, performance than 

that of Unicon.  The geometric mean of the normalized execution time, shown in the last 

column, was 1.30. 

The observed performance represents a tradeoff for the advantages gained in 

interoperability and compactness of implementation. Although extreme measures for 

optimization have not been taken, obviously wasteful implementation techniques, such as 

redundant reified declarations and repeated iterator construction in method bodies, have been 

avoided. In particular the Java implementation excels at arbitrary precision arithmetic, 

exercised by PiDigits, and object allocation in NewInstances, but is weaker in recursive 
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function invocation as evidenced in Quicksort. However, a potentially positive impact on 

performance is that our translation imposes a low overhead on calling Java methods, with no 

conversions needed through a foreign function interface.  In the previous Unicon 

implementation, calling down to the implementation language C was costly, and motivated 

refinements for native array types [Al-Gharaibeh et al. 2012a, Al-Gharaibeh 2012b].  In 

contrast, the Junicon implementation provides a greater measure of transparency, and 

moreover, can leverage other Java foreign language interfaces such as JNI (Java Native 

Interface) when needed. 

7.2 Performance of suspendable iteration 

In addition to the above evaluation, a comparative analysis of the performance of core 

functions for suspendable iteration was undertaken when embedding into Java as well as into 

Groovy. In this case, the performance of Junicon relative to Unicon was measured over time 

for both compiled Groovy and compiled Java translations. The motivation for measuring 

Groovy's performance was, in part, to evaluate the overhead of its use of relaxed typing as 

well as dynamic dispatch for method selection based on runtime types. The suite of programs 

was also refined to gain deeper insight into the overhead of Junicon's suspendable iteration 

and use of lambda expressions for function invocation. Moreover, the performance was also 

analyzed as a function of execution time, in order to gain a better idea of the impact of Java's 

dynamic compilation. 

The performance of Junicon relative to that of Unicon for the suspendable iteration 

kernel was benchmarked using a suite of six programs.  The programs exercise a wide range 

of Unicon features: Matrix Multiply tests list creation and access and is O(n3), Quicksort 

exercises recursive method invocation and is O(n log(n)), NewInstances exercises instance 
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creation and field access and is O(n), PiDigits, which computes pi to a given length, exercises 

arbitrary precision arithmetic and is O(n2), Loop Test measures the basic efficiency of the 

iterator calculus and is O(n2), and Suspend Test, which is structurally similar to Loop Test, 

measures the overhead of suspend and is O(n).  Sample sizes for each program were chosen 

to uniformly effect exponential execution time, ranging from 2 seconds to one hour, and each 

sample point is the average of three runs. 

Figures 23 and 24 show the performance of Junicon relative to that of Unicon for 

compiled Groovy and compiled Java translations, respectively.  The performance 

comparisons in Figure 23 are based on code compiled under Groovy 2.3 that exploits Java 

invoke dynamic support, and run under Java 1.8.  In contrast, Figure 24 shows the relative 
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performance of Junicon translated to Java, and then compiled and run under Java. The 

benchmarks were run on an AMD Dual-Core Opteron 2212 with 8GB of memory running 

Linux Mint 17. The execution times were measured using the time  command by adding both 

the user and system time, the latter which includes the overhead of Java Just-in-Time (JIT) 

compilation running on the second core. 

Consistent with the evaluation in the previous section, the results show that Junicon 

yields only marginally worse, and sometimes better, performance than that of Unicon.  In 

Figures 23 and 24, each data point represents the ratio of Junicon's execution time to that of 

Unicon for a given program and sample size.  Values below 1 on the y-axis demonstrate 

better performance than that of Unicon, while values above 1 correspond to worse 
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performance. In both figures, in the initial stages the performance of Junicon rapidly 

improves over time as Java's Just-in-Time (JIT) dynamic compiler converts often used 

methods, both user and system, to directly executable instructions. As shown in PiDigits, the 

use of Java's arbitrary precision arithmetic performs better than that of Unicon.  The 

implementation of suspend can be seen to incur little overhead, as evidenced when 

comparing the performance of Loop Test to Suspend Test.  These two programs give a 

baseline overhead for using the iterator calculus to implement generator expressions, which 

is roughly a factor of 2 slowdown over Unicon. 

Both Groovy and Java over the long term have roughly similar performance; however, 

Groovy's initial performance is quite a bit slower than that of Java, and as Groovy has a 

larger dependency set it takes longer for JIT to have full effect.  For example, in Figure 23 

Quicksort initially has a performance slowdown over 15 relative to that of Unicon; the inset 

to Figure 23 shows the full graph with the y-axis expanded to include Quicksort's first data 

point.  Moreover, Groovy's overhead in dynamic dispatch is evidenced in the degraded 

performance of NewInstances, which heavily employs static method invocation to overlay 

instance construction. 

If one views the Loop Test as giving a baseline to the overhead of using the iterator 

calculus to implement generator expressions, which is roughly a factor of 2 slowdown over 

Unicon, then the other sample programs are similarly impacted by that inherent overhead.  

Thus any speedup beyond the baseline of a factor of 2 slowdown, representing calculus 

overhead, may be a more accurate measure of improvement of a given feature's performance 

over that of Unicon.  Using that analysis, the performance of PiDigits could be interpreted to 

indicate a speedup by a factor of 4 over Unicon for the feature of arbitrary precision 
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arithmetic.  Lastly, we also examined the performance of several other variants such as using 

inner classes instead of lambda expressions in Java, as well as exposing methods in Groovy 

using function references in a manner similar to that done for Java, with little difference 

observed. 

Of particular interest is that the performance of Junicon is roughly equivalent, or even a 

little faster, than that reported for Jcon relative to Icon.  As mentioned, Jcon used a different 

implementation technique based on instrumentation of fail-resume ports to produce JVM 

byte code, and reported an overall slowdown by a factor of two relative to Icon [Proebsting 

and Townsend 2000].  The roughly similar performance results between the two radically 

different implementation techniques of Junicon and Jcon, despite that fact that Junicon does 

not directly generate bytecode, might imply that the performance difference between Unicon 

and the two Java translations is due to the inherent overhead of translating a dynamic 

language for generator expressions into Java. Consequently one might be led to surmise that 

Junicon's technique for transformation into an iterator calculus is potentially as efficient as 

any other implementation technique. 

7.3 Performance of concurrent generators 

To evaluate the utility of the techniques for embedding concurrent generators, several 

variants of the program described in Figure 6 were compiled to Java, and their performance 

measured against equivalent Java stream-based programs.  The suite of embedded Unicon 

programs consisted of a sequential word-count, a pipeline-parallel word-count that split the 

hash function into two tasks, a map-reduce word-count that spread the hash function and its 

summation reduction over chunks of data, and a data-parallel word-count that only differed 

in performing summation over the sequence returned from flattening the chunks, thus 
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splitting out the reduction and effecting serialization. The suite of Java programs similarly 

consisted of a sequential word-count, a pipelined version built using BlockingQueues over 

two threads, a parallel stream-based version that implemented map-reduce, and a data-

parallel version that was also stream-based but that split out the reduction.  Both suites used 

arbitrary precision arithmetic, which is implicit in Unicon but must be made explicit in Java. 

The Java Microbenchmarking Harness (JMH) was used to measure the performance of 

both suites on a Titan Quad AMD Opteron 6272 with 64-cores and 32GB of memory running 

Linux Fedora 20, with 20 warmup iterations and 20 test iterations.  In addition, a second 

heavyweight set of variants of the programs in both suites was also benchmarked, which 

increased the complexity of the hash function components and so the weight of the threaded 

tasks, in order to explore the relative overhead of coordination using concurrent generators. 

Figure 25 shows the relative performance of embedded concurrent generators when 

translated to Java.  Execution time is normalized with respect to that of the Java parallel 

stream benchmark for each of the lightweight and heavyweight sets, respectively.  

Confidence intervals at 99%, shown by whiskers at the top of the histogram bars, showed 

negligible variance.  In Figure 25, the eight histograms on the left use the lightweight 

versions of the wordToNumber and hashNumber functions described in Figure 6 that 

constitute the parallel computation nodes.  On the right of Figure 25 are shown eight 

corresponding histograms that use the far more heavyweight and computationally intensive 

hash functions, by a factor of roughly 80, achieved using trigonometry and prime number 

functions of Java's Math and BigInteger libraries. 
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The results showed that, as would be expected of a dynamic language, embedded 

generators yield worse performance than their native Java counterparts; however, the penalty 

is well under an order of magnitude.  Moreover, as can be observed in the right of Figure 25, 

as the weight of the computational nodes increases, the relative overhead of the embedded 

concurrent generators significantly decreases.  Indeed, even with map-reduce expressed 

entirely using concurrent generators, the performance impact on the right of Figure 25 is 

negligible.  When used to coordinate complex tasks, concurrent generators may thus 

potentially provide performance roughly comparable to that of Java streams. 

Another salient point is that the relative improvement among the embedded programs is 

roughly consistent with that of the comparable Java programs.  For the purposes of 

exploration in a prototyping scenario, ideally it should be the case that the relative observed 

performance among experimental alternatives is preserved under refinement.  While the 
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benchmark results are preliminary and a proof of concept, they demonstrate the potential 

feasibility of exploration using concurrent generators. 
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Chapter 8. Related Work 

8.1 Goal-directed evaluation 

The challenges of formalizing and implementing goal-directed evaluation have given rise to a 

variety of research efforts. Principal among these efforts was a Java implementation for Icon 

called Jcon [Proebsting and Townsend 2000], a bytecode generator that relied on a Prolog-

like Byrd-box model [Byrd 1980] to instrument backtracking using fail and resume ports 

[Proebsting 1997]. Other implementation efforts for Icon primarily relied on continuation-

based approaches for cross-translation, such as recursive interpretation using failure 

continuations [O'Bagy and Griswold 1987], cross-compilation into C using a continuation-

passing-style [O'Bagy et al. 1993], an optimizing compiler into C [Walker and Griswold 

1992], and a stream-based translator into Scheme [Allison 1990]. Efforts to formalize the 

semantics of Icon included a denotational semantics based on continuations [Gudeman 

1992], as well as a monad semantics for a small subset with compilation by type-driven 

partial evaluation [Danvy et al. 2002]. However, the residual programs of the above 

approach, as with Jcon, instrument code with suspend and resume advice, which renders 

problematic its interfacing with other programs. 

In contrast to these efforts our transformations rely on flattening to do the work of 

instrumentation or higher-order functions used in a continuation-based approach, and so 

enable interoperability. Our research also addresses a wider set of concerns including 

generator propagation in an object-oriented setting. Under our approach certain problematic 

features of Icon and Unicon such as first-class patterns [Walker 1989] and concurrency [Al-

Gharaibeh et al. 2012a, Al- Gharaibeh 2012b] become simpler to implement. Lastly, and 
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perhaps most importantly, our research focuses on the larger problem of mixed-language 

embedding of goal-directed evaluation into other object-oriented languages. 

8.2 Program transformation 

There are a broad array of transformation tools that could be brought to bear to implement 

the rewriting rules [Feather 1987, Visser 2005]. These technologies range from program 

transformation systems such as Stratego/XT [Bravenboer et al. 2008] and Spoofax [Kats and 

Visser 2010], to metaprogramming capabilities in languages such as Groovy [Dearle 2010] 

that allow extensions for domain specific languages. While the former are more formally 

based on concepts from term writing and theorem proving, the latter provides more ad-hoc 

support for manipulating the exposed syntax tree within the language itself. 

However, our techniques for the transformation of dynamic languages do not demand 

capabilities for syntax extension, nor demand the scope or formality of full-fledged 

transformation tools such as those above. For the small-scale transformation of dynamic 

languages, XSLT is a potentially attractive alternative due to its simplicity as a rewriting 

system and its bundled support in the Java standard distribution. 

8.3 Parallel dynamic languages 

In the area of concurrency, there are a variety of dynamic languages that support parallelism. 

These include Swift [Wilde et al. 2011], which supports implicit parallelism in which every 

data-element is single-assignment and behaves like a future.  Oz [Smolka 1995, Van Roy 

2005] is a multi-paradigm language for distributed programming whose explicit threads also 

use single-assignment dataflow variables.  Julia [Bezanson et al. 2014] provides explicit task 

spawning and synchronization based on futures as well as blocking channels, and also 
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supports metaprogramming through hygenic macros.  Parallel Ruby [Lu et al. 2014] is 

similarly based on explicit task parallelism using futures as well as pipelines.  

In contrast to the above efforts, our approach is one of mixed-language embedding 

rather than multi-paradigm integration within a single language, and focuses on grafting a 

simple model of concurrent generators onto other languages through transformations that 

enable interoperability.  We can thus leverage and integrate with the broader concurrency 

mechanisms of the underlying language. 

8.4 Suspendable iteration 

The aggregate operations of goal-directed evaluation, as well as the iterator calculus in which 

it is distilled, in many regards bear a striking similarity to the Java Stream interface. Indeed, 

many of the stream composition operators such as map, reduce, and limit are either implicit 

or present as primitives in Icon. Generators differ, however, in the support for suspendable 

iteration, as well as the provision of forms such as repeat and product  that depend on the 

ability to be restarted. 

The extension of Java iterators to support suspendable iteration bears some similarity to 

other work on interruptible iterators in JMatch [Liu et al. 2006, Liu and Myers 2003]. There 

the focus was on extending coroutine iterators to handle update operations on the underlying 

data structure.  Interruptible iterators for ML were also examined by Filliatre [Filliatre 2006] 

using purely functional persistent cursors that also allow backtracking.  In contrast, our 

iterators integrate suspend with failure-driven composition in a tightly knitted logic. It is also 

feasible to alternatively use multithreading to create a coroutine-like implementation of 

suspend in generator functions, as is provided in several Groovy and Java extension classes. 

However, the cost of multithreading is not minor. Our techniques for embedding goal-
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directed evaluation not only enable the use of suspend in languages otherwise missing such 

a capability, but implement it without multithreading. 
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Chapter 9.   Conclusions 

We developed a technique for embedding goal-directed evaluation into other object-oriented 

languages based on program transformation. We presented a novel form of annotations, 

called scoped annotations, that are used in conjunction with the transformations to support 

mixed-language embedding.  The transformations first use flattening to unravel the syntax of 

pervasive generators to a conventional form, which is key to enabling interoperability. The 

rewriting rules then map control constructs and operations onto a stream-like calculus for 

composing suspendable iterators that extends the products of bound iterators used in 

flattening with functional forms such as reduce and exists. Lastly, to accommodate Unicon's 

reference semantics, methods are exposed as variadic lambda expressions. We demonstrated 

the utility of the approach by concretely targeting the transformations to allow embedding 

into Java as well as its dynamic analogue Groovy, and so realized an implementation that can 

function both interactively and as a translator for compilation. We evaluated the performance 

of embedding when translated to Java, and found it comparable to that of native Unicon. 

We further extended the transformations to enable mixed-language embedding of 

concurrent generators. We presented a simple model of explicit concurrency for generators 

based on co-expressions and generator proxies, called pipes, that communicate with the 

original expression running in a separate thread using blocking queues. We demonstrated the 

utility of the approach in expressing parallel pipelining as well as in building higher-order 

abstractions such as map-reduce, and evaluated their performance against equivalent Java 

stream-based programs.  

The use of transformational interpretation for mixed-language embedding has several 

distinct advantages.  First, the rewriting rules of the transformations clarify the semantics of 
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Unicon by reducing nested generators to a familiar and explicit form that is more closely 

allied to conventional programming concepts. Moreover, the derivation of an iterator 

calculus yields an equational definition of Unicon's control constructs, and enables a compact 

implementation of suspendable iteration. Second, the normalization techniques that make 

explicit the otherwise implicit generator propagation enable the grafting of goal-directed 

evaluation onto other object-oriented languages.  Third, by carefully preserving native types 

and invocation mechanisms, the implementation can cleanly integrate with and leverage the 

full range of Java capabilities, including its portability and libraries for concurrency and 

graphics.  Moreover, by translating onto the dynamic language Groovy and leveraging its 

underlying scripting engine, we are able in turn to realize an interactive interpreter. 

The capability for embedding a dynamic language for goal-directed evaluation within a 

familiar object-oriented setting, in combination with such interactive evaluation, enables 

exploration and rapid prototyping.  In particular, mixed-language embedding allows using 

the succinct notation of concurrent generators for the coordination of coarse-grained 

processes in other languages, as well as the rapid prototyping and refinement of parallel 

programs for multi-core architectures. 

Lastly, the Junicon implementation demonstrates that XSLT is potentially well suited 

for expressing several types of program transformations.  While not terribly well founded in 

formal methods, the efficacy of XSLT as a rewriting system and its bundled support in Java 

make it extremely attractive.  Moreover, its use yielded an extremely compact 

implementation that is readily extensible and retargetable. Rapid development of translation 

enhancements is facilitated by the scripted nature of the XSLT transforms.  We examined the 

ease of retargeting by migrating the transforms to Java as well as Groovy. Junicon's 
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extensibility is further enhanced by its configuration mechanisms, based on Spring 

dependency injection, that specify how operations and built-in functions are mapped onto 

Groovy or Java classes. 

Currently the implementation [Junicon 2016] supports the full set of Unicon constructs 

and operators, including those for concurrency and co-expressions, as well as most of Icon’s 

built-in functions. Future efforts will focus on further refining the abstractions for 

concurrency in generators, as well as evaluating their performance. Lastly, program 

monitoring and debugging within a transformational framework is an area to be further 

explored.  
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edu.uidaho.junicon.interpreter.interpreter

Interface IInterpreter

OVERVIEW PACKAGE CLASS USE TREE DEPRECATED INDEX HELP
Junicon 1.8.4 API

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

All Superinterfaces:

IDispatcher, IEnvironment, IInterpreterContext,
IInterpreterSetters, IPropertiesExtender, IThreadResolver

All Known Implementing Classes:

AbstractShell, CommandShell, JuniconInterpreter,
TransformInterpreter

public interface IInterpreter
extends IInterpreterContext, IInterpreterSetters, IDispatcher, 
IEnvironment, IPropertiesExtender, IThreadResolver

Interface for transformational interpreters that parse, transform, and then execute
statements on a scripting substrate. The steps involved in transformational
interpretation are to handle any directives, preprocess each line of input, accumulate a
complete statement and then parse it, decorate the parse tree, normalize it, test to filter
it out for export, transform it, decide to whom to delegate it, and then either execute the
transformed line of input using a scripting engine substrate or dispatch it to another
sub-interpreter for further transformation. 
The interface is common to and satisfied by both the outer interactive command shell
and its sub-interpreters that map from sub-languages such as Unicon onto specific
substrates such as Groovy via cross-translation. The command shell, or meta-
interpreter, has the added responsibility to identify parsable units and their target
language from lines of input, filter them, and then dispatch them to the appropriate sub-
interpreter. 
Each transformational interpreter thus has a notion of sub-interpreters as well as a
substrate, onto one of which it may dispatch the transformed input for execution.
Substrates differ from sub-interpreters in that they are implementation targets such as
Groovy that need not obey the transformational interpreter interface. 
The equational specification of the steps involved in transformational interpretation is
given below in eval() and evalLine().

Appendix 1.  Transformational Interpreter API 
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Method Summary

Modifier and Type Method and Description

IInterpreter chooseDelegate(String transformedSource,
ILineContext context)
Decide which sub-interpreter to delegate to.

Document decorate(String inputSource,
Document parseTree, ILineContext context)
Decorate the parse tree with additional syntactic or
semantic information.

Object dispatch(String transformedSource,
ILineContext context)
Execute the transformed source code on a sub-interpreter
or directly on a substrate.

void displayPrompt()
Displays the command prompt.

Object eval(String inputSource,
ILineContext context)
Evaluate a parsable complete statement or set of
statements.

Object evalLine(String inputLine,
ILineContext context)
Evaluate all parsable complete statements found so far in
the input line history.

Object exec(String inputSource,
ILineContext context)
Evaluate a parsable complete statement.

void execFile(InputStream instream,
ILineContext context, boolean promptflag)
Line-by-line evaluation of the input stream, extracting
statements using the preprocessor and statement detector.

void execFile(InputStream instream,
ILineContext context, boolean promptFlag,
boolean stopOnScriptError,

All Methods Instance Methods Abstract Methods
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boolean aggregateInput)
Line-by-line evaluation of the input stream, extracting
statements using the preprocessor and statement detector.

boolean execScript(String script,
ILineContext context, boolean promptFlag,
boolean stopOnScriptError)
Line-by-line evaluation of the input string, extracting
statements using the preprocessor and statement detector.

boolean execScriptFile(String filename,
boolean promptFlag,
boolean stopOnScriptError)
Line-by-line evaluation of the input file, extracting
statements using the preprocessor and statement detector.

Object executeOnSubstrate(String transformedSource,
ILineContext context)
Execute the transformed source code on the substrate, if it
exists.

void exit()
Tells the interpreter to exit.

InterpreterException filterException(Throwable cause)
Filter exceptions in the execFile interpretive loop.

String filterOut(String inputSource,
Document parseTree, ILineContext context)
Test a statement based on its AST and source, and if
needed take it out of the transform sequence and
separately handle it.

String getParseUnit(String inputLine,
ILineContext context)
Obtains a parsable unit from the history of lines in the
input stream.

ILineContext getParseUnitContext()
Gets context of parse unit returned by last call to
getParseUnit, or null if no parse unit returned on last call.

String handleBeginOfScript(String annotation)
Handle beginning of script.

String handleDirective(String line)
Handle a directive.

99



String handleEndOfScript(String line)
Handle end of script.

boolean isClosedStatement()
Returns true if the input so far to getParseUnit has
matching group delimiters, but need not be terminated by
a semicolon ";".

boolean isDirective(String line)
Test if an input line is a directive given by a scoped
annotation of the form: @<tag attr=x attr'=y ...

boolean isPartialStatement()
Returns true if input so far to getParseUnit does not form
a complete parsable statement.

Document normalize(Document parseTree,
ILineContext context)
Reduce the parsed input to normal form.

String normalize(String inputSource,
Document normalized, ILineContext context)
Reduce the input to normal form.

Document parse(String sourceInput,
ILineContext context)
Parses the source input for the target substrate.

void resetTransformed()
Reset evaluation state.

void setInit(String dummy)
Initialize interpeter, after setters in dependency injection.

void setRunInterpreter(String dummy)
Run interpreter, if outer interactive shell.

String transform(String inputSource,
Document parseTree, ILineContext context)
Perform the language-specific transformation from the
input source and/or the parse tree.

Methods inherited from
interface edu.uidaho.junicon.interpreter.interpreter.
IInterpreterContext
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getLogger, getName, getParent, getParser, getSubstrate,
getType, setLogger, setName, setParent, setParser,
setSubstrate, setType

Methods inherited from
interface edu.uidaho.junicon.interpreter.interpreter.
IInterpreterSetters

getCompileTransforms, getDefaultCompileTransforms,
getDoNotDetect, getDoNotExecute, getDoNotPreprocess,
getDoNotTransform, getEcho, getInheritVerbose,
getIsInteractive, getIsInterpretive, getIsVerbose,
getJustNormalize, getKillLineChar, getLineSeparator,
getPartialPrompt, getPrompt, getResetParserOnError,
getShowRawSubstrateErrors, getStopScriptOnError,
getTransformSupport, setCompileTransforms,
setDefaultCompileTransforms, setDoNotDetect, setDoNotExecute,
setDoNotPreprocess, setDoNotTransform, setEcho,
setInheritVerbose, setIsInteractive, setIsInterpretive,
setIsVerbose, setJustNormalize, setKillLineChar,
setPartialPrompt, setPrompt, setResetParserOnError,
setShowRawSubstrateErrors, setStopScriptOnError,
setTransformSupport

Methods inherited from
interface edu.uidaho.junicon.interpreter.interpreter.
IDispatcher

getDefaultDispatchInterpeter, getDispatchChildren,
setAddDispatchChild, setDefaultDispatchInterpreter,
setDefaultDispatchInterpreterByName, setDispatchChildren,
setDispatchChildren

Methods inherited from
interface edu.uidaho.junicon.interpreter.interpreter.
IEnvironment

getDelegateEnvironment, getEnv, getEnv, getEnvironment,
getEnvNames, setDelegateEnvironment, setEnv

Methods inherited from
interface edu.uidaho.junicon.interpreter.interpreter.
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IPropertiesExtender

clearProperties, getDefaultDefaultProperties,
getDefaultProperties, getProperties, getPropertiesDelegate,
getProperty, getProperty, getPropertyNames, loadProperties,
setAddProperties, setDefaultDefaultProperties,
setDefaultProperties, setDefaultProperties,
setDefaultPropertiesToSystem, setProperties,
setPropertiesDelegate, setProperty, storeProperties

Methods inherited from
interface edu.uidaho.junicon.support.transforms.
IThreadResolver

getThreadResource

Method Detail

setInit

void setInit(String dummy)
      throws InterpreterException

Initialize interpeter, after setters in dependency injection. Intended to be last
setter in Spring dependency injection. The recommended usage scenario is as
follows.

        main() { shell = Spring_bean_creation(XML lastly 
calls setInit);
                 shell.setRunInterpreter(); }
 

Parameters:

dummy - Ignored dummy parameter for Spring invocation.

Throws:

InterpreterException

setRunInterpreter

void setRunInterpreter(String dummy)
                throws InterpreterException
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Run interpreter, if outer interactive shell. Intended to be called after Spring bean
creation and setInit.

Parameters:

dummy - Ignored dummy parameter for Spring invocation.

Throws:

InterpreterException

isDirective

boolean isDirective(String line)

Test if an input line is a directive given by a scoped annotation of the form: @<tag
attr=x attr'=y ... > ... @</tag>, or just @<tag attr=x ... />. Directives are scoped
annotations on a single line, and bypass all parsers if handled.

Scoped annotations are a hybrid of XML and Java annotations. Java style
attributes such as @<tag (key=value, ...)> or @<tag (value)> can also be used,
instead of XML style attributes. One can override this method so that scoped
annotations might alternatively follow a different syntax such as
@command(args).

Commented scoped annotations that begin with #@< are also allowed, and are
treated the same way as scoped annotations.

handleDirective

String handleDirective(String line)
                throws InterpreterException

Handle a directive. By default this method returns the input line unchanged. It
can be overriden for other behavior. For example, if a line in a file starts with
@<script lang="...">, any file contents up to an ending @</script> tag are
directly passed to the substrate interpreter, without preprocessing or
transformation.

Returns:

non-null text to continue processing, or null if directive
was consumed.

Throws:

InterpreterException
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handleBeginOfScript

String handleBeginOfScript(String annotation)

Handle beginning of script. Invoked by handleDirective.

handleEndOfScript

String handleEndOfScript(String line)

Handle end of script. Invoked by handleDirective.

getParseUnit

String getParseUnit(String inputLine,
                    ILineContext context)
             throws ParseException

Obtains a parsable unit from the history of lines in the input stream. If a
preprocessor has been set, this is used to first process the input line using its
getParseUnit. The result is added to a history of preprocessed input lines. The
next parsable unit, i.e. a complete statement, is then obtained from the
preprocessed input history.

Parameters:

inputLine - a line of source input, without the line
separator (e.g., carriage return), to add to the input line
history.

context - input line context, passed to the preprocessor and
carried through into the input history.

Returns:

parse unit, if the input line history has a parsable unit;
null otherwise.

Throws:

ParseException

getParseUnitContext

ILineContext getParseUnitContext()

Gets context of parse unit returned by last call to getParseUnit, or null if no parse
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unit returned on last call.

isPartialStatement

boolean isPartialStatement()

Returns true if input so far to getParseUnit does not form a complete parsable
statement. Complete statements have matching group delimiters "{}" "()" "[]" and
are terminated by a semicolon ";".

isClosedStatement

boolean isClosedStatement()

Returns true if the input so far to getParseUnit has matching group delimiters, but
need not be terminated by a semicolon ";".

parse

Document parse(String sourceInput,
               ILineContext context)
        throws ParseException

Parses the source input for the target substrate. The input must be a parsable
complete statement.

Parameters:

sourceInput - parsable unit of source input

context - input line context

Returns:

XML Abstract Syntax Tree (XML-AST), or null if sourceInput is
null.

Throws:

ParseException

decorate

Document decorate(String inputSource,
                  Document parseTree,
                  ILineContext context)
           throws InterpreterException
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Decorate the parse tree with additional syntactic or semantic information.

Returns:

parseTree if inputSource or parseTree is null, or if there is
no transform.

Throws:

InterpreterException

resetTransformed

void resetTransformed()

Reset evaluation state.

normalize

Document normalize(Document parseTree,
                   ILineContext context)
            throws InterpreterException

Reduce the parsed input to normal form.

Returns:

parseTree if parseTree is null, or if there is no transform.

Throws:

InterpreterException

normalize

String normalize(String inputSource,
                 Document normalized,
                 ILineContext context)
          throws InterpreterException

Reduce the input to normal form.

Returns:

inputSource if inputSource is null, or if there is no
transform.

Throws:

InterpreterException
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filterOut

String filterOut(String inputSource,
                 Document parseTree,
                 ILineContext context)
          throws InterpreterException

Test a statement based on its AST and source, and if needed take it out of the
transform sequence and separately handle it. Filtering takes items out of the
transform sequence, for example to export artifacts such as classes, interfaces, or
webservices.

Returns:

inputSource if should continue to process the transform
stream, otherwise returns null if filtered it out.

Throws:

InterpreterException

transform

String transform(String inputSource,
                 Document parseTree,
                 ILineContext context)
          throws InterpreterException

Perform the language-specific transformation from the input source and/or the
parse tree. 
This will typically be a transform chain with several stages: transforming the XML
Abstract Syntax Tree (XML-AST) to another Document, and then deconstructing
and formatting it into the specific target language.

Returns:

inputSource if inputSource or parseTree is null, or if there
is no transform.

Throws:

InterpreterException

chooseDelegate

IInterpreter chooseDelegate(String transformedSource,
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                            ILineContext context)

Decide which sub-interpreter to delegate to.

Returns:

null if this interpreter should handle the command.

dispatch

Object dispatch(String transformedSource,
                ILineContext context)
         throws InterpreterException

Execute the transformed source code on a sub-interpreter or directly on a
substrate. Sets currentInterpreter to this. 
Equivalent to:

        if (null or this == chooseDelegate(source)) { 
executeOnSubstrate(source);
        } else { chooseDelegate(source).evalLine(source); };
 

Parameters:

transformedSource - representing the transformed input source
code.

Returns:

result of evaluation.

Throws:

InterpreterException

executeOnSubstrate

Object executeOnSubstrate(String transformedSource,
                          ILineContext context)
                   throws InterpreterException

Execute the transformed source code on the substrate, if it exists.

Parameters:

transformedSource - the transformed input source code.

Returns:

result of execution.
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Throws:

InterpreterException

exec

Object exec(String inputSource,
            ILineContext context)
     throws InterpreterException

Evaluate a parsable complete statement. Synonymous with eval().

Returns:

result of evaluation. Returns null on null input.

Throws:

InterpreterException

eval

Object eval(String inputSource,
            ILineContext context)
     throws InterpreterException

Evaluate a parsable complete statement or set of statements. Evaluation does not
use the preprocessor and statement detector. Eval() is stateful, and synonymous
with exec(). Sets currentInterpreter to this. 
Equivalent to:

        let normalized = normalize (decorate (input, parse 
(input)));
        let normalizedText = normalize (input, normalized);
        if (null != filterOut (normalizedText, normalized)) 
{
                dispatch (transform (normalizedText, 
normalized)) };
 

where dispatch is equivalent to:

        if (null or this == chooseDelegate(source)) {
                executeOnSubstrate(source);
        } else { chooseDelegate(source).evalLine(source); };
 

Returns:
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result of evaluation. Returns null on null input (i.e., is
null-idempotent).

Throws:

InterpreterException

evalLine

Object evalLine(String inputLine,
                ILineContext context)
         throws InterpreterException

Evaluate all parsable complete statements found so far in the input line history.
Evaluation uses the preprocessor and statement detector. Statements can thus
span multiple lines and begin or end in mid-line. The statement detector is
stateful in looking for parsable statements in the input passed to it. 
Equivalent to:

        (eval (getParseUnit(isDirective(line)?
handleDirective(line):line)))* 
 

where "*" means repeat until no more parseUnits returned.

Returns:

result of evaluation.

Throws:

InterpreterException

execFile

void execFile(InputStream instream,
              ILineContext context,
              boolean promptFlag,
              boolean stopOnScriptError,
              boolean aggregateInput)
       throws InterpreterException

Line-by-line evaluation of the input stream, extracting statements using the
preprocessor and statement detector. Repeatedly parse, normalize, filter,
transform and execute commands from the input stream. 
Equivalent to:
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        (displayPrompt; evalLine (readLine (instream)))*
                        until exit() or eof().
 

A line is considered to be terminated by any one of a line feed ('\n'), a carriage
return ('\r'), or a carriage return followed immediately by a linefeed. Thus, works
with either Unix or Windows text file formats for both input script files and input
from stdin.

Parameters:

instream - input stream containing source code.

context - file and line context

promptFlag - print a prompt before each getting each line of
input.

stopOnScriptError - stop processing input lines if an error
occurs.

aggregateInput - evaluate the whole file at once, not line by
line.

Throws:

InterpreterException

execFile

void execFile(InputStream instream,
              ILineContext context,
              boolean promptflag)
       throws InterpreterException

Line-by-line evaluation of the input stream, extracting statements using the
preprocessor and statement detector. 
Prints a prompt if promptflag, and does not stop on error. Works with either Unix
or Windows text file formats for both input script files and input from stdin.

Throws:

InterpreterException

filterException

InterpreterException filterException(Throwable cause)

Filter exceptions in the execFile interpretive loop. Default behavior is to print the
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error message and, if getIsDebug(), printstackTrace.

Returns:

filtered exception.

execScript

boolean execScript(String script,
                   ILineContext context,
                   boolean promptFlag,
                   boolean stopOnScriptError)
            throws InterpreterException

Line-by-line evaluation of the input string, extracting statements using the
preprocessor and statement detector. Uses execFile to load and run the shell
script from a string.

Throws:

InterpreterException

execScriptFile

boolean execScriptFile(String filename,
                       boolean promptFlag,
                       boolean stopOnScriptError)
                throws InterpreterException

Line-by-line evaluation of the input file, extracting statements using the
preprocessor and statement detector. Uses execFile to load and run the shell
script from a file.

Throws:

InterpreterException

exit

void exit()

Tells the interpreter to exit.

displayPrompt
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void displayPrompt()

Displays the command prompt.
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Appendix 2.  Junicon LL(k) Grammar 

/************************************************************************* 
 * Tokens 
 ************************************************************************/ 
 
//======================================================================== 
// Tokens: White space 
//======================================================================== 
<DEFAULT> SKIP : { 
<WHITESPACE: " " | "\t" | "\f"> 
} 
 
<DEFAULT> SPECIAL : { 
<NEWLINE: "\n" | "\r" | "\r\n"> 
} 
 
//======================================================================== 
// Tokens: Comments 
//======================================================================== 
<DEFAULT> TOKEN : { 
<ANNOTATION_COMMENT_PREFIX: "#@<"> 
| <#REST_OF_LINE: (~["\n","\r"])* ("\n" | "\r" | "\r\n")?> 
} 
 
<DEFAULT> SPECIAL : { 
<SINGLE_LINE_COMMENT: "#" (~["\n","\r"])* ("\n" | "\r" | "\r\n")?> 
} 
 
//======================================================================== 
// Tokens: Reserved words 
//======================================================================== 
<DEFAULT> TOKEN : { 
<ABSTRACT: "abstract"> 
| <BREAK: "break"> 
| <BY: "by"> 
| <CASE: "case"> 
| <CLASS: "class"> 
| <CREATE: "create"> 
| <THREAD: "thread"> 
| <CRITICAL: "critical"> 
| <DEFAULT_token: "default"> 
| <DO: "do"> 
| <ELSE: "else"> 
| <END: "end"> 
| <EVERY: "every"> 
| <FAIL: "fail"> 
| <GLOBAL: "global"> 
| <IF: "if"> 
| <IMPORT: "import"> 
| <IN: "in"> 
| <INITIAL: "initial"> 
| <INITIALLY: "initially"> 
| <INVOCABLE: "invocable"> 
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| <LINK: "link"> 
| <LOCAL: "local"> 
| <METHOD: "method"> 
| <NEW: "new"> 
| <NEXT: "next"> 
| <NOT: "not"> 
| <NULL_LITERAL: "null"> 
| <OF: "of"> 
| <PACKAGE: "package"> 
| <PROCEDURE: "procedure"> 
| <RECORD: "record"> 
| <REPEAT: "repeat"> 
| <RETURN: "return"> 
| <STATIC: "static"> 
| <SUSPEND: "suspend"> 
| <THEN: "then"> 
| <TO: "to"> 
| <UNTIL: "until"> 
| <WHILE: "while"> 
} 
 
//======================================================================== 
// Tokens: Separators 
//======================================================================== 
<DEFAULT> TOKEN : { 
<LPAREN: "("> 
| <RPAREN: ")"> 
| <LBRACE: "{"> 
| <RBRACE: "}"> 
| <LBRACKET: "["> 
| <RBRACKET: "]"> 
| <SEMICOLON: ";"> 
| <COMMA: ","> 
| <DOTDOTDOT: "..."> 
| <DOT: "."> 
| <ANNOTATION: "@<"> 
| <AT: "@"> 
| <COMPR: "[:"> 
| <COMPREND: ":]"> 
| <COLON: ":"> 
| <COLONCOLON: "::"> 
| <LBRACE_EBCDIC: "$("> : { 
| <RBRACE_EBCDIC: "$)"> : { 
| <LBRACKET_EBCDIC: "$<"> : { 
| <RBRACKET_EBCDIC: "$>"> : { 
} 
 
//======================================================================== 
// Tokens: Operators, grouped by precedence 
//======================================================================== 
<DEFAULT> TOKEN : { 
<AND: "&"> 
| <QMARK: "?"> 
| <ASSIGN: ":="> 
| <REVASSIGN: "<-"> 
| <REVSWAP: "<->"> 
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| <SWAP: ":=:"> 
| <PMATCH: "??"> 
| <POR: ".|"> 
| <BAR: "|"> 
| <PAND: "&&"> 
| <GT: ">"> 
| <LT: "<"> 
| <EQ: "=="> 
| <LE: "<="> 
| <GE: ">="> 
| <EQUALS: "="> 
| <LSHIFT: "<<"> 
| <RSHIFT: ">>"> 
| <SLE: "<<="> 
| <EQUIV: "==="> 
| <SGE: ">>="> 
| <NMNE: "~="> 
| <SNE: "~=="> 
| <NEQUIV: "~==="> 
| <PIMDASSN: "$$"> 
| <PASSNONMATCH: "->"> 
| <SND: "@>"> 
| <SNDBK: "@>>"> 
| <RCV: "<@"> 
| <RCVBK: "<<@"> 
| <CONCAT: "||"> 
| <LCONCAT: "|||"> 
| <PLUS: "+"> 
| <MINUS: "-"> 
| <INCR: "++"> 
| <DECR: "--"> 
| <STAR: "*"> 
| <SLASH: "/"> 
| <PERCENT: "%"> 
| <INTER: "**"> 
| <CARET: "^"> 
| <BANG: "!"> 
| <BACKSLASH: "\\"> 
| <TILDE: "~"> 
| <PSETCUR: ".$"> 
| <PIPE: "|>"> 
| <FUTURE: "|>>"> 
| <COEXPR: "|<>"> 
| <FIRSTCLASS: "<>"> 
| <PARALLEL: "|<>|"> 
| <BACKQUOTE: "`"> 
| <PCOLON: "+:"> 
| <MCOLON: "-:"> 
| <DOLLAR: "$"> 
| <AUGMOD: "%:="> 
| <AUGAND: "&:="> 
| <AUGSTAR: "*:="> 
| <AUGINTER: "**:="> 
| <AUGPLUS: "+:="> 
| <AUGUNION: "++:="> 
| <AUGMINUS: "-:="> 
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| <AUGDIFF: "--:="> 
| <AUGSLASH: "/:="> 
| <AUGNMLT: "<:="> 
| <AUGSLT: "<<:="> 
| <AUGSLE: "<<=:="> 
| <AUGNMLE: "<=:="> 
| <AUGNMEQ: "=:="> 
| <AUGSEQ: "==:="> 
| <AUGEQUIV: "===:="> 
| <AUGNMGT: ">:="> 
| <AUGNMGE: ">=:="> 
| <AUGSGT: ">>:="> 
| <AUGSGE: ">>=:="> 
| <AUGQMARK: "?:="> 
| <AUGAT: "@:="> 
| <AUGCARET: "^:="> 
| <AUGCONCAT: "||:="> 
| <AUGNEQUIV: "~===:="> 
| <AUGSNE: "~==:="> 
| <AUGNMNE: "~=:="> 
| <AUGLCONCAT: "|||:="> 
} 
 
//======================================================================== 
// Tokens: Numeric literals 
//======================================================================== 
<DEFAULT> TOKEN : { 
<INTEGER_LITERAL: <DECIMAL_LITERAL>> 
| <RADIX_LITERAL: <DECIMAL_LITERAL> ["r","R"] (["0"-"9","a"-"f","A"-"F"])+> 
| <#DECIMAL_LITERAL: (["0"-"9"])+> 
| <REAL_LITERAL: (["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)? | "." (["0"-"9"])+ (<EXPONENT>)? | 

(["0"-"9"])+ <EXPONENT>> 
| <#EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+> 
} 
 
<DEFAULT> MORE : { 
"\"" : WithinQuote 
} 
 
<WithinQuote> SKIP : { 
<"_" <NEWLINE> (<WHITESPACE>)*> : WithinQuote 
} 
 
<WithinQuote> TOKEN : { 
<STRING_LITERAL: "\""> : DEFAULT 
} 
 
<WithinQuote> MORE : { 
<~["\"","\\"] | <ESCAPE_LITERAL>> 
} 
 
//==================== 
// Single quote -- multiline continuations are as for double quotes. 
//==================== 
<DEFAULT> MORE : { 
"\'" : WithinSingleQuote 
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} 
 
<WithinSingleQuote> SKIP : { 
<"_" <NEWLINE> (<WHITESPACE>)*> : WithinSingleQuote 
} 
 
<WithinSingleQuote> TOKEN : { 
<SINGLE_QUOTE_LITERAL: "\'"> : DEFAULT 
} 
 
<WithinSingleQuote> MORE : { 
<~["\'","\\"] | <ESCAPE_LITERAL>> 
} 
 
//==================== 
// Quote regex dependencies 
//==================== 
<DEFAULT> TOKEN : { 
<#OLD_SINGLE_QUOTE_LITERAL: "\'" (~["\'","\\"] | <ESCAPE_LITERAL>)* "\'"> 
| <#OLD_STRING_LITERAL: "\"" (~["\"","\\"] | <ESCAPE_LITERAL>)* "\""> 
| <#ESCAPE_LITERAL: "\\" (<HEX_ESCAPE> | <OCTAL_ESCAPE> | <CONTROL_ESCAPE> | ["!"-

"~"," ","\t","\n","\r","\f"])> 
| <#ESCAPE_LITERAL_NO_NL: "\\" (<HEX_ESCAPE> | <OCTAL_ESCAPE> | <CONTROL_ESCAPE> 

| ["!"-"~"," ","\t","\f"])> 
| <#HEX_ESCAPE: ["x","X"] <HEX_DIGITS>> 
| <#OCTAL_ESCAPE: ["0"-"7"] ["0"-"7"]> 
| <#CONTROL_ESCAPE: "^" ["!"-"~"]> 
| <#HEX_DIGITS: ["0"-"9","a"-"f","A"-"F"]> 
} 
 
//======================================================================== 
// Tokens: Big literals (Block quotes, or Big quotes) 
//======================================================================== 
<DEFAULT> TOKEN : { 
<BIG_LITERAL: "{<" (~[">","}","\\"] | ">" ~["}","\\"] | ~[">","\\"] "}" | ">" <ESCAPE_LITERAL> | 

<ESCAPE_LITERAL> ("}")?)* ([">","}"])? ">}"> 
} 
 
//======================================================================== 
// Tokens: Identifiers 
//======================================================================== 
<DEFAULT> TOKEN : { 
<IDENTIFIER: <IDENTIFIER_BASE>> 
| <#IDENTIFIER_BASE: <ALPHA> (<ALPHA> | <DIGIT>)*> 
| <#ALPHA: ["A"-"Z","a"-"z","_"]> 
| <#LETTER: ["$","A"-"Z","_","a"-"z","\u00c0"-"\u00d6","\u00d8"-"\u00f6","\u00f8"-"\u00ff","\u0100"-

"\u1fff","\u3040"-"\u318f","\u3300"-"\u337f","\u3400"-"\u3d2d","\u4e00"-
"\u9fff","\uf900"-"\ufaff"]> 

| <#DIGIT: ["0"-"9","\u0660"-"\u0669","\u06f0"-"\u06f9","\u0966"-"\u096f","\u09e6"-"\u09ef","\u0a66"-
"\u0a6f","\u0ae6"-"\u0aef","\u0b66"-"\u0b6f","\u0be7"-"\u0bef","\u0c66"-
"\u0c6f","\u0ce6"-"\u0cef","\u0d66"-"\u0d6f","\u0e50"-"\u0e59","\u0ed0"-
"\u0ed9","\u1040"-"\u1049"]> 

} 
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NON-TERMINALS 
 
/************************************************************************* 
 * LANGUAGE GRAMMAR STARTS HERE 
 ************************************************************************/ 
 
//======================================================================== 
// Program structuring syntax follows. 
//======================================================================== 
ParseAndVisit ::= Start <EOF> 
Start ::= ( PackageDeclaration | ImportDeclaration | Link | Invocable | Record | 

Global | ProcedureNew | Procedure | Method | ClassDeclarationNew | 
ClassDeclaration | LocalDeclaration | BlockStatement | BlockAsExpr | 
LambdaAsExpr )* 
 

//==== 
// Junicon allows optional trailing semicolons in declarations. 
//====   
PackageDeclaration ::= ( ( PACKAGE Type | PACKAGE TypeStringLiteral ) ( SEMICOL )? ) 
ImportDeclaration ::= ( IMPORT ( NameOrStringList | TypeStringLiteral | ( STATIC )? 

ImportName ) ( SEMICOL )? ) 
Link ::= LINK NameOrStringList ( SEMICOL )? 
Invocable ::= INVOCABLE InvocList ( SEMICOL )? 
InvocList ::= Invocop ( COMMA Invocop )* 
Invocop ::= ( TypeName | TypeStringLiteral COLON TypeIntLiteral | 

TypeStringLiteral ) 
Directive ::= DOLLAR Identifier SpacedArgList ( SEMICOL )? 
Record ::= ( AnnotationType )? RECORD DeclaredName LPAREN ( ParamList )? 

RPAREN ( SEMICOL )? 
Global ::= ( AnnotationType )? GLOBAL ( Type GlobalVarDeclList SEMICOL | 

GlobalVarDeclList ( SEMICOL )? ) 
 

//======================================================================== 
// Procedures. 
//========================================================================  
Procedure ::= ProcedurePrefix SEMICOL ProcBody END ( SEMICOL )? 
ProcedureNew ::= ProcedurePrefix ProcBodyNew ( SEMICOL )? 
ProcedurePrefix ::= ( AnnotationType )? PROCEDURE DeclaredName LPAREN ( 

ParamList )? RPAREN 
Initial ::= INITIAL Expr SEMICOL 
ProcBody ::= ( AllEmptyBlock | BlockLocals ( Initial )? ( ( BlockStatement )+ 

TrailingEmptyBlock | TrailingEmptyBlock ) ) 
ProcBodyNew ::= ( LBRACE AllEmptyBlock RBRACE | LBRACE BlockLocals ( Initial 

)? ( TrailingEmptyBlock | ExprSequence ) RBRACE ) 
LocalDeclaration ::= LocalDeclarationPrefix ( Type VarInitList | VarInitList ) SEMICOL 
LocalDeclarationNoSemicolon ::= LocalDeclarationPrefix ( Type VarInitList | VarInitList ) 
LocalDeclarationPrefix ::= ( AnnotationType )? ( LOCAL | STATIC ) 

 
 
//======================================================================== 
// Classes. 
//========================================================================  
ClassDeclaration ::= ClassPrefix ( SEMICOL )? ClassMethods END ( SEMICOL )? 
ClassDeclarationNew ::= ClassPrefix LBRACE ClassMethods RBRACE ( SEMICOL )? 



120 
 

ClassPrefix ::= ( AnnotationType )? CLASS DeclaredName ( Supers )? LPAREN ( 
ParamList )? RPAREN 

ClassMethods ::= ( Method | Global | Record | LocalDeclaration | EmbeddedScript )* ( 
SEMICOL )? ( InitiallyNew | Initially )? 

Supers ::= COLON Super ( COLON Super )* 
Super ::= MethodRefType 
 | Type 
Initially ::= InitiallyPrefix SEMICOL ProcBody 
InitiallyNew ::= InitiallyPrefix ProcBodyNew ( SEMICOL )? 
InitiallyPrefix ::= INITIALLY ( LPAREN ( ParamList )? RPAREN )? 
Method ::= ( AbstractMethod | RealMethodNew | RealMethod ) 
AbstractMethod ::= MethodPrefix ( SEMICOL )? 
RealMethod ::= MethodPrefix SEMICOL ProcBody END ( SEMICOL )? 
RealMethodNew ::= MethodPrefix ProcBodyNew ( SEMICOL )? 
MethodPrefix ::= ( AnnotationType )? ( ABSTRACT )? ( MethodModifiers )? METHOD 

DeclaredName LPAREN ( ParamList )? RPAREN 
MethodModifiers ::= STATIC 

 
//============================================================================ 
// Declared names (variables and parameters), Types, and Atoms in expressions. 
//============================================================================ 
IdList   ::= DeclaredName ( COMMA DeclaredName )* 
DeclaredName ::= Identifier 
VarInitList ::= VariableInitializer ( COMMA VariableInitializer )* 
VariableInitializer ::= ( LocalVariable ASSIGN Expr | LocalVariable ) 
LocalVariable ::= Identifier 
GlobalVarDeclList ::= GlobalVariable ( COMMA GlobalVariable )* 
GlobalVariable ::= Identifier 
ParamList ::= ( Params LBRACKET_TYPE RBRACKET_TYPE | Params ) 
Params ::= Param ( COMMA Param )* 
Param ::= ( JavaTypedParameter | ( DeclaredParameterName ( COLON Type )? ( ( 

COLON | EQUALS ) TypeLiteral )? ) ) 
 

//==== 
// Parameter can be param[:type][: or =literal] 
//====   
JavaTypedParameter ::= ParameterType DeclaredParameterName ( ( EQUALS ) TypeLiteral )? 
DeclaredParameterName ::= Identifier 
ParameterType ::= ( DotName | Identifier ) ( DOTDOTDOT )? 
Type ::= ( GenericType | DotName | Identifier ) 
GenericType ::= DotNameMaybe LANGLE_TUPLE TypeList RANGLE_TUPLE 
TypeList ::= Type ( COMMA Type )* 
TypeName ::= Identifier 
MethodRefType ::= PackageRef 
PackageRef ::= ( DotName COLONCOLON Identifier | SingleDotName 

COLONCOLON Identifier | EmptyDotName COLONCOLON Identifier ) 
DotName ::= Identifier ( DOT RelaxedIdentifier )+ 
SingleDotName ::= Identifier 
EmptyDotName ::= AllEmptyAtom 
DotNameMaybe ::= ( DotName | Identifier ) 
ImportName ::= ( ImportDotName | Identifier ) 
ImportDotName ::= Identifier ( DOT ( Identifier | STAR ) )+ 
SpacedArgList ::= ( Identifier | Literal )* 
NameOrStringList ::= NameOrString ( COMMA NameOrString )* 
NameOrString ::= TypeName 
 | TypeStringLiteral 
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TypeLiteral ::= Literal 
TypeStringLiteral ::= StringLiteral 
TypeIntLiteral ::= IntLiteral 

 
//======================================================================== 
// Parameterized closure. 
//========================================================================  
Closure ::= LPAREN ( ParamList )? RPAREN ClosureOperator LBRACE 

ExprSequenceAsBlock RBRACE 
ExprSequenceAsBlock ::= ( AllEmptyBlock | BlockLocals ( TrailingEmptyBlock | ExprSequence ) 

) 
 
//======================================================================== 
// Block statements and bounded expressions. 
//========================================================================  
Block ::= LBRACE AllEmptyBlock RBRACE 
 | LBRACE BlockLocals TrailingEmptyBlock RBRACE 
 | LBRACE BlockLocals ExprSequence RBRACE 
BlockLocals ::= ( LocalDeclaration )* 
ExprSequence ::= ( InnerEmptyBlock | Nothing ) ( BlockExpr | Nothing ) ( SEMICOL 

BlockExpr | SEMICOL InnerEmptyBlock )* 
 
//==== 
// ExprSequence is to be non-empty, and ends with an expression or innerEmpty. 
// If it would be empty, test and use allEmpty instead. 
// Invariant: {AllEmpty} or {x;TrailingEmpty} or {x;y} where x may be InnerEmpty 
//==== 
// We pad leading ";", trailing ";", and ";;" with an empty atom. 
// We indicate an empty ExprSequence with AllEmpty(). 
// A trailing Empty() mimics Icon sequence semantics which ends with ;null. 
// Transform must later detect last expr after semicolon to be unbounded. 
//====   
BlockAsExpr ::= BlockAsGroup 
BlockAsGroup ::= Block 
LambdaAsExpr ::= LambdaAsGroup 
LambdaAsGroup ::= Closure 
AllEmptyExpr ::= AllEmptyAtom 
AllEmptyBlock ::=  
AllEmptyList ::=  
InnerEmptyBlock ::= InnerEmptyAtom 
InnerEmptyList ::= InnerEmptyAtom 
TrailingEmptyBlock ::= TrailingEmptyAtom 
TrailingEmptyList ::= TrailingEmptyAtom 
AllEmptyAtom ::=  
InnerEmptyAtom ::=  
TrailingEmptyAtom ::=  
BlockStatement ::= InnerEmptyBlock SEMICOL 
 | BoundedExpr SEMICOL 
 
//==== 
// Blockstatement ends with semicolon. 
//====   
BlockExpr ::= BoundedExpr 
//==== 
// BlockExpr need not have semicolon after it. 
//====   
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BoundedExpr ::= ( ( Annotation )+ PlainExpression | PlainExpression ) 
Expr ::= ( ( Annotation )+ PlainExpression | PlainExpression ) 
PlainExpression ::= ( Statement | Command | AndExpression ) 
StatementExpression ::= Statement 

 
//======================================================================== 
// Control constructs. 
//========================================================================  
Statement ::= ( If | Case | While | Until | Every | Repeat | Create | Thread | Next | Break | 

Fail | Suspend | Return | Critical | Puneval ) 
StatementLookahead ::= ( IF | CASE | WHILE | UNTIL | EVERY | REPEAT | CREATE | 

THREAD | NEXT | BREAK | FAIL | SUSPEND | RETURN | CRITICAL | 
PUNEVAL ) 

If ::= IF BoundedExpr THEN Expr ( ELSE Expr )? 
Case ::= CASE BoundedExpr OF LBRACE CaseList RBRACE 
CaseList ::= CaseItem ( SEMICOL CaseItem )* 
CaseItem ::= ( ( BoundedExpr COLON Expr ) | ( DEFAULT COLON Expr ) ) 
While ::= WHILE BoundedExpr ( DO BoundedExpr )? 
Until ::= UNTIL BoundedExpr ( DO BoundedExpr )? 
Every ::= EVERY Expr ( DO BoundedExpr )? 
Repeat ::= REPEAT ( BoundedExpr )? 
Create ::= CREATE Expr 
Thread ::= THREAD Expr 
Next ::= NEXT 
Break ::= BREAK ( Expr | AllEmptyExpr ) 
Fail ::= FAIL 
Suspend ::= SUSPEND ( SuspendExpr | AllEmptyExpr ) 
SuspendExpr ::= Expr ( DO BoundedExpr )? 
Return ::= RETURN ( BoundedExpr | AllEmptyExpr ) 
Critical ::= CRITICAL BoundedExpr 
Puneval ::= PUNEVAL Expr 
Command ::= CommandNameAsAtom ( LimitedPrimaryExpression )+ 
CommandNameAsAtom ::= ( MethodRef | DotName | StrictIdentifier ) 
LimitedPrimaryExpression ::= ( LimitedObjectRef | LimitedInvokeExpr ) 
LimitedObjectRef ::= LimitedInvokeExpr DOT ( ( FieldExpression DOT )* FieldExpression ) 
LimitedInvokeExpr ::= SingleItem ( Arguments | ArraySuffix )* 
 
//======================================================================== 
// Expressions. 
//======================================================================== 
//==== 
// Cascade down for precedence, low to high. 
// Higher precedence operators bind more tightly, i.e., are executed first. 
//====   
AndExpression ::= QmarkExpression ( AND QmarkExpression )* 

 
//==== 
// Iterative production is left-associative. 
//====   
QmarkExpression ::= Assignment ( QMARK Assignment )* 
 
//==== 
// Recursive production is right-associative. 
//====   
Assignment ::= FirstClassExpression ( ( AssignOperator | AugmentedAssign ) 

Assignment )? 
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//==== 
// Transform must detect Lhs of assign. 
//====   
FirstClassExpression ::= ( FirstClassOperators )? PmatchExpression 
PmatchExpression ::= ToExpression ( PmatchOperators ToExpression )* 
 
//==== 
// Operations are only allowed to the left of a statement, e.g., if. 
// Anything to the right of a statement will bind together. 
//====   
ToExpression ::= PorExpression ( TO PorExpression ( BY PorExpression )? )? 
PorExpression ::= BarExpression ( PorOperators BarExpression )* 
BarExpression ::= CompareExpression ( BarOperators CompareExpression )* 
CompareExpression ::= ConcatExpression ( CompareOperators ConcatExpression )* 
ConcatExpression ::= AddExpression ( ConcatOperators AddExpression )* 
AddExpression ::= MultiplyExpression ( AddOperators MultiplyExpression )* 
MultiplyExpression ::= CaretExpression ( MultiplyOperators CaretExpression )* 
 
//==== 
// CaretExpression is right associative via right recursion. 
//====   
CaretExpression ::= BangExpression ( CARET CaretExpression )? 
BangExpression ::= UnaryExpression ( BangOperators UnaryExpression )* 
 
//==== 
// UnaryExpression is right associative via right recursion. 
//====   
UnaryExpression ::= ( ( StatementExpression | ( UnaryOperators | UnaryBooleanOperators | 

NOT ) UnaryExpression ) | PrimaryExpression ) 
//==== 
// Transform must detect that unary Not applies to boundedExpression() 
//==== 
 
//======================================================================== 
// Primary expressions. 
//========================================================================  
PrimaryExpression ::= ( CastExpression | CastEmbeddedScript | PrimaryExpressionNoCast ) 
CastExpression ::= Cast PrimaryExpressionNoCast 
CastEmbeddedScript ::= Cast EmbeddedScript 
Cast ::= LPAREN Type RPAREN 
PrimaryExpressionNoCast ::= ( IteratorExpression | ObjectRef | InvokeExpr ) 
InvokeExpr ::= ObjectExpr ( Arguments | ArraySuffix )* 
 
//==== 
// InvokeExpr includes invoke as well as standalone atom and group. 
//====   
ObjectExpr ::= ( AllocationExpr | MethodRefAsAtom | SingleItem | GroupExpr ) 
ObjectRef ::= InvokeExpr DOT ( ( FieldExpression DOT )* FieldExpression ) 
FieldExpression ::= Field ( Arguments | ArraySuffix )* 

 
//==== 
// ObjectExpr and FieldExpression in Java 8 use: [Arguments()] (ArraySuffix())* 
//====   
Field ::= ( RelaxedIdentifier ) 
AllocationExpr ::= NEW Type 
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Arguments ::= ( Invoke | CoExprInvoke | SuperInvoke ) 
Invoke ::= LPAREN_EMPTY AllEmptyList RPAREN 
 | LPAREN ExprList RPAREN 
CoExprInvoke ::= LBRACE_EMPTYSET AllEmptyList RBRACE_SET 
 | LBRACE_SET ExprList RBRACE_SET 
SuperInvoke ::= DOLLAR ( INITIALLY | ( Identifier ( DOT Identifier | INITIALLY )? ) 

) ( LPAREN_EMPTY AllEmptyList RPAREN | LPAREN ExprList RPAREN ) 
ArraySuffix ::= LBRACKET_EMPTYINDEX AllEmptyList RBRACKET_INDEX 
 | LBRACKET_INDEX ( RangeExpr | ExprList ) RBRACKET_INDEX 
RangeExpr ::= Expr ( COLON | PCOLON | MCOLON ) Expr 
SingleItem ::= ( Identifier | AndKeyword | Literal ) 
GroupExpr ::= ( Closure | Tuple | Map | EmptyMapComprEnd | Set | Block | CaseMap | 

List | EmptyMapCompr | ListComprehension ) 
IteratorExpression ::= InIterator 
ArgList ::= ExprList 
ExprList ::= ( InnerEmptyList | Nothing ) ( Expr | Nothing ) ( COMMA Expr | 

COMMA InnerEmptyList )* 
 
//==== 
// Exprlist is to be non-empty, and ends with an expression or innerEmpty. 
// If it would be empty, test and use allEmpty instead. 
// Invariant: (AllEmpty) or (x,TrailingEmpty) or (x,y) where x may be Empty 
//==== 
// We pad leading ",", trailing ",", and ",," with Empty(). 
// We indicate an empty ExprList with AllEmpty(). 
//====   
RightDelim ::= RPAREN 
 | RBRACE 
 | RBRACKET 
Nothing ::=  
MethodRef ::= ( DotNameAsAtom COLONCOLON RelaxedIdentifier | 

SingleDotNameAsAtom COLONCOLON RelaxedIdentifier | 
CastDotNameAsAtom COLONCOLON RelaxedIdentifier | EmptyDotName 
COLONCOLON RelaxedIdentifier ) 

 
//==== 
// Methodref: x.y::f | ((Cast) x).y::f(z) 
//====   
CastDotNameAsAtom ::= CastInParen ( DOT Field )* 
CastInParen ::= LPAREN SimpleCastExpression RPAREN 
SimpleCastExpression ::= Cast IdentifierAsAtom 
DotNameAsAtom ::= IdentifierAsAtom ( DOT Field )+ 
SingleDotNameAsAtom ::= IdentifierAsAtom 
IdentifierAsAtom ::= Identifier 
MethodRefAsAtom ::= MethodRef 

 
//======================================================================== 
// Tuple, map, list, and set. 
//========================================================================  
Tuple ::= LPAREN_EMPTY AllEmptyList RPAREN 
 | LPAREN ExprList RPAREN 
List ::= LBRACKET_EMPTYLIST AllEmptyList RBRACKET 
 | LBRACKET ExprList RBRACKET 
CaseMap ::= LBRACKET_MAP CaseList RBRACKET_MAP 
Map ::= LBRACKET_EMPTYMAP COLON RBRACKET 
 | LBRACKET_MAP MapList RBRACKET_MAP 
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MapList ::= KeyColonValue ( COMMA KeyColonValue )* 
KeyColonValue ::= Expr COLON Expr 
EmptyMapCompr ::= COMPR_EMPTYMAP RBRACKET_MAP 
EmptyMapComprEnd ::= LBRACKET_EMPTYMAP COMPREND 
Set ::= LBRACE_SET ExprList RBRACE_SET 
ListComprehension ::= COMPR_EMPTY AllEmptyList COMPREND 
 | COMPR Expr COMPREND 

 
//======================================================================== 
// Iterators. 
//========================================================================  
InIterator ::= ( LPAREN COLON IN Expr RPAREN | LPAREN IdentifierAsExpr IN 

Expr RPAREN ) 
IdentifierAsExpr ::= IdentifierAsAtom 
LiteralAsAtom ::= Literal 
BigLiteralAsAtom ::= BigLiteral 
BigLiteralAsExpr ::= BigLiteralAsAtom 

 
//======================================================================== 
// Annotations. 
//========================================================================  
AnnotationType ::= Annotation 
AnnotationComment ::= ( ANNOTATION_COMMENT_PREFIX SLASH XmlTag GT | XmlTag 

( SpacedNamedArgList )? ( SLASH )? GT ) 
Annotation ::= ( ANNOTATION SLASH XmlTag GT | ANNOTATION XmlTag 

LPAREN ( NamedArgList | AnnotationExpr )? RPAREN ( SLASH )? GT | 
ANNOTATION XmlTag ( SpacedNamedArgList )? ( SLASH )? GT ) 

XmlTag ::= RelaxedDotNameMaybe ( COLON RelaxedDotNameMaybe )? 
RelaxedDotNameMaybe ::= RelaxedIdentifier ( DOT RelaxedIdentifier )* 
SpacedNamedArgList ::= NamedArg ( NamedArg )* 
NamedArgList ::= NamedArg ( COMMA NamedArg )* 
NamedArg ::= Identifier EQUALS AnnotationExpr 
AnnotationExpr ::= Expr 
EmbeddedScript ::= AnnotationType BigLiteralAsExpr 

 
//======================================================================== 
// Grouped literals and keywords 
//========================================================================  
Literal ::= IntLiteral 
 | RealLiteral 
 | StringLiteral 
 | CharLiteral 
 | BigLiteral 
 | NullLiteral 
AndKeyword ::= AND ( Identifier | Fail | NullLiteral ) 
 
/************************************************************************* 
 * TERMINALS START HERE 
 ************************************************************************/ 
 
//======================================================================== 
// Terminals: Reserved Words 
//========================================================================  
ABSTRACT ::= <ABSTRACT> 
BREAK ::= <BREAK> 
BY ::= <BY> 
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CASE ::= <CASE> 
CLASS ::= <CLASS> 
CREATE ::= <CREATE> 
THREAD ::= <THREAD> 
CRITICAL ::= <CRITICAL> 
DEFAULT ::= <DEFAULT_token> 
DO ::= <DO> 
ELSE ::= <ELSE> 
END ::= <END> 
EVERY ::= <EVERY> 
FAIL ::= <FAIL> 
GLOBAL ::= <GLOBAL> 
IF ::= <IF> 
IMPORT ::= <IMPORT> 
IN ::= <IN> 
INITIAL ::= <INITIAL> 
INITIALLY ::= <INITIALLY> 
INVOCABLE ::= <INVOCABLE> 
LINK ::= <LINK> 
LOCAL ::= <LOCAL> 
METHOD ::= <METHOD> 
NEW ::= <NEW> 
NEXT ::= <NEXT> 
NOT ::= <NOT> 
OF ::= <OF> 
PACKAGE ::= <PACKAGE> 
PROCEDURE ::= <PROCEDURE> 
RECORD ::= <RECORD> 
REPEAT ::= <REPEAT> 
RETURN ::= <RETURN> 
STATIC ::= <STATIC> 
SUSPEND ::= <SUSPEND> 
THEN ::= <THEN> 
TO ::= <TO> 
UNTIL ::= <UNTIL> 
WHILE ::= <WHILE> 
 
//======================================================================== 
// Terminals: Delimiters 
//========================================================================  
LPAREN ::= <LPAREN> 
RPAREN ::= <RPAREN> 
LBRACE ::= <LBRACE> 
RBRACE ::= <RBRACE> 
LBRACE_CLOSURE ::= <LBRACE> 
RBRACE_CLOSURE ::= <RBRACE> 
LBRACE_SET ::= <LBRACE> 
RBRACE_SET ::= <RBRACE> 
LBRACKET ::= <LBRACKET> 
RBRACKET ::= <RBRACKET> 
LBRACKET_INDEX ::= <LBRACKET> 
RBRACKET_INDEX ::= <RBRACKET> 
LBRACKET_MAP ::= <LBRACKET> 
RBRACKET_MAP ::= <RBRACKET> 
LBRACKET_TYPE ::= <LBRACKET> 
RBRACKET_TYPE ::= <RBRACKET> 
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LANGLE_TUPLE ::= <LT> 
RANGLE_TUPLE ::= <GT> 
COMPR ::= <COMPR> 
COMPREND ::= <COMPREND> 
LPAREN_EMPTY ::= <LPAREN> 
LBRACE_EMPTYSET ::= <LBRACE> 
LBRACKET_EMPTYINDEX ::= <LBRACKET> 
LBRACKET_EMPTYLIST ::= <LBRACKET> 
LBRACKET_EMPTYMAP ::= <LBRACKET> 
COMPR_EMPTYMAP ::= <COMPR> 
COMPR_EMPTY ::= <COMPR> 
SEMICOL ::= <SEMICOLON> 
COLON ::= <COLON> 
COLONCOLON ::= <COLONCOLON> 
COMMA ::= <COMMA> 
DOT ::= <DOT> 
DOTDOTDOT ::= <DOTDOTDOT> 
 
//======================================================================== 
// Terminals: Operators 
//========================================================================  
AND ::= <AND> 
QMARK ::= <QMARK> 
ASSIGN ::= ( <ASSIGN> ) 
AssignOperator ::= ( <ASSIGN> | <REVASSIGN> | <REVSWAP> | <SWAP> ) 
AugmentedAssign ::= ( <AUGMOD> | <AUGAND> | <AUGSTAR> | <AUGINTER> | 

<AUGPLUS> | <AUGUNION> | <AUGMINUS> | <AUGDIFF> | 
<AUGSLASH> | <AUGNMLT> | <AUGSLT> | <AUGSLE> | <AUGNMLE> | 
<AUGNMEQ> | <AUGSEQ> | <AUGEQUIV> | <AUGNMGT> | 
<AUGNMGE> | <AUGSGT> | <AUGSGE> | <AUGQMARK> | <AUGAT> | 
<AUGCARET> | <AUGCONCAT> | <AUGNEQUIV> | <AUGSNE> | 
<AUGNMNE> | <AUGLCONCAT> ) 

PmatchOperators ::= <PMATCH> 
PorOperators ::= <POR> 
BarOperators ::= ( <BAR> | <PAND> ) 
ClosureOperator ::= ( <PASSNONMATCH> ) 
CompareOperators ::= ( <GT> | <LT> | <EQ> | <LE> | <GE> | <EQUALS> | <LSHIFT> | 

<RSHIFT> | <SLE> | <EQUIV> | <SGE> | <NMNE> | <SNE> | <NEQUIV> | 
<PIMDASSN> | <PASSNONMATCH> ) 

ConcatOperators ::= ( <CONCAT> | <LCONCAT> ) 
AddOperators ::= ( <PLUS> | <MINUS> | <INCR> | <DECR> ) 
MultiplyOperators ::= ( <STAR> | <SLASH> | <PERCENT> | <INTER> ) 
CARET ::= <CARET> 
BangOperators ::= ( <BANG> | <BACKSLASH> | <AT> | <SND> | <SNDBK> ) 
FirstClassOperators ::= ( <FIRSTCLASS> | <FUTURE> | <PIPE> | <COEXPR> | 

<PARALLEL> ) 
UnaryOperators ::= ( <TILDE> | <PSETCUR> | <AT> | <BAR> | <CONCAT> | 

<LCONCAT> | <DOT> | <BANG> | <DECR> | <PLUS> | <STAR> | <CARET> 
| <INTER> | <MINUS> | <EQUALS> | <NMNE> | <EQ> | <RCV> | <RCVBK> | 
<SNE> | <EQUIV> | <INCR> | <QMARK> | <NEQUIV> ) 

UnaryBooleanOperators ::= ( <SLASH> | <BACKSLASH> ) 
PCOLON ::= <PCOLON> 
MCOLON ::= <MCOLON> 
DOLLAR ::= <DOLLAR> 
AT ::= <AT> 
LT ::= <LT> 
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GT ::= <GT> 
SLASH ::= <SLASH> 
STAR ::= <STAR> 
EQUALS ::= <EQUALS> 
PUNEVAL ::= <BACKQUOTE> 
 
//======================================================================== 
// Terminals: Identifiers 
//======================================================================== 

  
Identifier ::= ( <IDENTIFIER> | <NEW> | <IN> ) 
StrictIdentifier ::= ( <IDENTIFIER> ) 
RelaxedIdentifier ::= ( <IDENTIFIER> | <IN> | <NEXT> | <THREAD> | <INITIALLY> ) 
 
//======================================================================== 
// Terminals: Literals 
//========================================================================  
BigLiteral ::= <BIG_LITERAL> 
IntLiteral ::= ( <INTEGER_LITERAL> | <RADIX_LITERAL> ) 
RealLiteral ::= <REAL_LITERAL> 
CharLiteral ::= <SINGLE_QUOTE_LITERAL> 
StringLiteral ::= <STRING_LITERAL> 
NullLiteral ::= <NULL_LITERAL> 
 
//======================================================================== 
// Terminals: Annotations 
//========================================================================  
ANNOTATION ::= <ANNOTATION> 
ANNOTATION_COMMENT_PREFIX ::= <ANNOTATION_COMMENT_PREFIX> 
 
 



<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:lang="http://www.springframework.org/schema/lang" xsi:schemaLocation="
http://www.springframework.org/schema/beans
classpath:org/springframework/beans/factory/xml/spring-beans-3.2.xsd
http://www.springframework.org/schema/aop
classpath:org/springframework/aop/config/spring-aop-3.2.xsd">
<!--

#=============================================== 
# Outer command shell 
#=============================================== 

-->
<bean id="CommandShell"
class="edu.uidaho.junicon.interpreter.interpreter.CommandShell">
<!--  
#==== 
# Dependency injection 
#====  -->
<property name="name" value="Shell"/>
<property name="type" value="CommandShell"/>
<property name="parent">
<null/>

</property>
<property name="parser" ref="StatementDetectorParser"/>
<property name="substrate">
<null/>

</property>
<property name="logger" ref="DefaultLogger"/>
<!--  
#==== 
# Dispatcher to Groovy sub-interpreter 
#====  -->
<property name="addDispatchChild" ref="JuniconInterpreter"/>
<property name="defaultDispatchInterpreter" ref="JuniconInterpreter"/>
<!--  
#==== 
# Base properties 
#====  -->
<property name="prompt" value=">>> "/>
<property name="partialPrompt" value="... "/>
<property name="defaultCompileTransforms" value="false"/>
<property name="compileTransforms" value="false"/>
<property name="showRawSubstrateErrors" value="true"/>
<!--  
#==== 
# Shell properties 
#====  -->
<property name="isInteractive" value="false"/>
<property name="ignoreSystemStartup" value="false"/>
<property name="echo" value="false"/>
<property name="echoStartup" value="false"/>
<property name="echoSystemStartup" value="false"/>
<property name="stopScriptOnError" value="false"/>
<property name="exitOnScriptError" value="false"/>
<property name="resetParserOnError" value="true"/>
<property name="usage">
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<value>#{inputUsage.contents}</value>
</property>
<property name="appWindows">
<value>#{inputAppWindows.contents}</value>

</property>
<property name="appLinux">
<value>#{inputAppLinux.contents}</value>

</property>
<property name="javaPreface">
<value>#{inputJavaPreface.contents}</value>

</property>
<property name="startupScripts">
<list>
<value>#{inputPrelude.contents}</value>
<value>#{inputStartupScript.contents}</value>

</list>
</property>
<property name="startupScriptNames">
<list>
<value>#{inputPrelude.filename}</value>
<value>#{inputStartupScript.filename}</value>

</list>
</property>

</bean>
<!--

#=============================================== 
# Logger 
#=============================================== 

-->
<bean id="DefaultLogger" class="edu.uidaho.junicon.runtime.util.LoggerFactory">
<property name="defaultPrintStream" value="#{T(java.lang.System).out}"/>
<property name="isDebug" value="false"/>
<property name="isTrace" value="false"/>

</bean>
<!--

#=============================================== 
# Parsers: QuoteDetector => Preprocessor => StatementDetector => Grammar 
#=============================================== 

-->
<bean id="StatementDetectorParser"
class="edu.uidaho.junicon.interpreter.parser.ParserFromPreprocessor">
<property name="name" value="StatementDetector"/>
<property name="type" value="StatementDetector"/>
<property name="parent" ref="CommandShell"/>
<property name="preprocessor" ref="Preprocessor"/>
<property name="parserWrapper" ref="StatementDetector"/>

</bean>
<bean id="StatementDetector"
class="edu.uidaho.junicon.interpreter.parser.StatementDetector">
<property name="quoteOnlyMode" value="false"/>
<property name="preserveEmptyLines" value="true"/>
<property name="allowPoundComment" value="true"/>
<property name="allowSlashComment" value="true"/>
<property name="allowMultilineComment" value="false"/>
<property name="allowBlockQuote" value="true"/>
<property name="allowPatternLiteral" value="false"/>
<property name="allowOntologyLiteral" value="false"/>
<property name="allowCommandLiteral" value="false"/>
<property name="allowEscapedStartQuote" value="false"/>
<property name="allowEscapedEndQuote" value="true"/>
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<property name="allowEscapedBlockQuote" value="false"/>
<property name="allowEscapedComment" value="false"/>
<property name="allowEscapedNewline" value="false"/>
<property name="allowEscapedNewlineInQuote" value="false"/>
<property name="allowEscapedNewlineInBlockQuote" value="true"/>
<property name="splitMultipleStatementsOnLine" value="true"/>

</bean>
<bean id="Preprocessor"
class="edu.uidaho.junicon.interpreter.parser.ParserFromPreprocessor">
<property name="name" value="Preprocessor"/>
<property name="type" value="Preprocessor"/>
<property name="parent" ref="CommandShell"/>
<property name="parentParser" ref="StatementDetectorParser"/>
<property name="preprocessor" ref="QuoteMetaParser"/>
<property name="parserWrapper" ref="JuniconPreprocessor"/>

</bean>
<bean id="JuniconPreprocessor"
class="edu.uidaho.junicon.grammars.junicon.JuniconPreprocessor">
<property name="relaxedUniconSyntax" value="true"/>
<property name="doSemicolonInsertion" value="true"/>

</bean>
<bean id="QuoteMetaParser"
class="edu.uidaho.junicon.interpreter.parser.ParserFromPreprocessor">
<property name="name" value="QuoteDetector"/>
<property name="type" value="StatementDetector"/>
<property name="parent" ref="CommandShell"/>
<property name="parentParser" ref="Preprocessor"/>
<property name="parserWrapper" ref="QuoteDetector"/>

</bean>
<bean id="QuoteDetector"
class="edu.uidaho.junicon.interpreter.parser.StatementDetector">
<property name="quoteOnlyMode" value="true"/>
<property name="preserveEmptyLines" value="true"/>
<property name="allowPoundComment" value="true"/>
<property name="allowSlashComment" value="false"/>
<property name="allowMultilineComment" value="false"/>
<property name="allowEscapedStartQuote" value="false"/>
<property name="allowEscapedEndQuote" value="true"/>
<property name="allowEscapedBlockQuote" value="false"/>
<property name="allowEscapedComment" value="false"/>
<property name="allowEscapedNewline" value="false"/>
<property name="allowEscapedNewlineInQuote" value="false"/>
<property name="allowEscapedNewlineInBlockQuote" value="true"/>

</bean>
<bean id="JuniconParser"
class="edu.uidaho.junicon.interpreter.parser.ParserFromGrammar">
<property name="name" value="JuniconParser"/>
<property name="type" value="JuniconParser"/>
<property name="parent" ref="JuniconInterpreter"/>
<property name="parserWrapper" ref="JuniconJavaccParser"/>

</bean>
<bean id="JuniconJavaccParser" class="edu.uidaho.junicon.grammars.junicon.ParserBase">
</bean>
<!--

#=============================================== 
# Numeric precision and index origin.   These can be turned on two ways. 
# 1. Transformation to Groovy.  Directives are as follows. 
#  @<index origin="1"> 
#    Index origin is used for index operations c[i]. 
#    If index origin is specified using a directive it is  
#    fixed at transformation, i.e., syntactially hardcoded as a setter. 
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#     Otherwise it defaults at runtime to IconNumber.getIndexOrigin(). 
# 2. Runtime of Java, after translation.  Setters are as follows. 
#  IconNumber.setIsIntegerPrecision(true); 
#  IconNumber.setIsRealPrecision(false); 
#     For translation to Java, numeric literals are surrounded by 
#     IconNumber calls that coerce them to BigInteger or BigDecimal if 
#     isIntegerPrecision or isRealPrecision() are on, respectively. 
#     Operators also use arbitrary precision in converting strings to 
#    numbers, and in their numeric results, if the above setters are on. 
#    Index origin is used for index and string operations. 
#  IconNumber.setIndexOrigin(1); 
#    These defaults are initially set in IconNumber from System properties 
#  junicon.isIntegerPrecision "true" 
#  junicon.isRealPrecision "false" 
#  junicon.indexOrigin "1". 
#    Java code thus can at runtime dynamically turn arbitrary 
#     precision fully off or on using the above System properties. 
# The above directives and setters can be set in this Spring file, 
#    in source code, or in the startup file. 
#=============================================== 

-->
<bean id="NumberPrecision"
class="edu.uidaho.junicon.runtime.junicon.iterators.IconNumber">
<property name="defaultIsIntegerPrecision" value="true"/>
<property name="defaultIsRealPrecision" value="false"/>
<property name="defaultIndexOrigin" value="1"/>

</bean>
<!--

#=============================================== 
# Junicon to Groovy interpreter 
#=============================================== 

-->
<bean id="JuniconInterpreter"
class="edu.uidaho.junicon.substrates.junicon.JuniconInterpreter">
<!--  
#==== 
# Dependency injection 
#====  -->
<property name="name" value="Junicon"/>
<property name="type" value="JuniconIntepreter"/>
<property name="parent" ref="CommandShell"/>
<property name="parser" ref="JuniconParser"/>
<property name="substrate" ref="DefaultSubstrate"/>
<property name="logger" ref="DefaultLogger"/>
<!--  
#==== 
# Delegate properties to CommandShell. 
#====  -->
<property name="propertiesDelegate" ref="CommandShell"/>
<!--

#==== 
# Junicon properties. 
# Interpreter properties inherit System.properties 
# as well as any properties set here, and are used in transforms. 
#==== 

-->
<property name="addProperties">
<props>
<!--
 Force source code to have explicit origin hardcoded. 
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     <prop key="index.origin">1</prop> 
     

-->
</props>

</property>
<!--

#==== 
# Create transform support, i.e., methods used in XSLT.  
#==== 

-->
<property name="transformSupport" ref="TransformSupport"/>
<!--  
#==== 
# Base properties 
#====  -->
<property name="prompt" value=">>> "/>
<property name="partialPrompt" value="... "/>
<!--

 <property name="defaultCompileTransforms" value="false"/> 
    

-->
<!--  
#==== 
# Transforms 
#====  -->
<property name="compileTransforms" value="false"/>
<property name="showRawSubstrateErrors" value="true"/>
<!--

#==== 
# Correlate source : concrete syntax nodes 
#==== 

-->
<property name="concreteSyntaxNodes">
<list>
<value>IDENTIFIER</value>
<value>LITERAL</value>
<value>KEYWORD</value>
<value>OPERATOR</value>
<value>DELIMITER</value>

</list>
</property>
<!--  
#==== 
# Transforms 
#====  -->
<property name="normalizeTransform" value="#{inputNormalize.contents}"/>
<property name="codeTransform" value="#{inputMainTransform.contents}"/>
<property name="deconstructTransform" value="#{inputDeconstruct.contents}"/>
<property name="formatTransform" value="#{inputFormat.contents}"/>
<property name="correlateFormatTransform" value="#{inputFormatCorrelate.contents}"/>
<property name="normalizeFormatTransform" value="#{inputFormatNormalize.contents}"/>
<property name="exportTransform" value="#{inputExport.contents}"/>
<!--  
#==== 
# Debugging 
#====  -->
<property name="doNotExecute" value="false"/>
<!--  #==== 
     # Initialization 
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     #====  -->
<property name="init">
<null/>

</property>
</bean>
<!--

#=============================================== 
# Transform supporting methods. 
#=============================================== 

-->
<bean id="TransformSupport"
class="edu.uidaho.junicon.support.transforms.TransformSupport">
<!--

    #==== 
    # Catalog of named property maps, used to configure transforms. 
    #==== 
    

-->
<property name="catalog">
<map>
<!--

#==== 
# Properties: indexOrigin. 
# Properties delegate to JuniconInterpreter 
# and from there to CommandShell. 
# CommandShell properties are set from directives, e.g. 
# @<index origin="0"/> 
# The directives translate into dot-separated properties: 
# index.origin 
# When an open directive, e.g. @<index origin="0">, is encountered, 
# it saves all properties prefixed with "index", clears them, 
# and then sets properties from the attributes. 
# When a close directive, e.g. @</index> is encountered, it 
# clears all properties prefixed with "index", and restores them 
# from the saved values. 
#==== 
# Index origin may be either 0 or 1. 
# For index origin 1, applies Icon rules for slicing c[i..e], which 
# extend up to but not including the end index, 
# and ignore reversal if the begin is after the end. 
# Otherwise, Groovy rules for slicing apply which includes the end index 
# and reverses results if the begin is after the end. 
# In both cases subscripting is from the end of the list if < 0. 
#==== 

-->
<entry key="Properties" value="#{CommandShell.properties}"/>
<!--

#==== 
# Map symbols to operations over iterators using 
#   OperatorOverIterators Unary/Binary, OperatorOverAtoms Unary/Binary, 
#   OperatorAsGenerator, OperatorAsFunction, FunctionOverAtoms, 
#   SymbolAsIterator, SymbolAsProperty, SymbolAsVariable, SymbolAsValue, 
#   UndoFunction. 
# 
# Symbols include operators such as +, control constructs such as "if", 
#   and keywords such as &amp;features. 
# 
# UndoFunction maps symbols, both operators and function calls, 
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# to undo actions, and flags the symbol as undoable. 
# 
# Evaluation order is as follows.   If symbol is in: 
#   OperatorAsGenerator, treats the symbol as a generator over its 
# atom arguments.  It is treated like a function by normalization 
# to flatten its arguments into atoms, and then translated to 
# an iterator constructor. Thus, the operator, first changed to a 
# synthetic function, is changed back to an iterator over atoms. 
# For example, !x is changed to !(x), its arguments normalized, 
# and finally !(x) is changed back to "new IconPromote(x)". 
#   OperatorAsFunction, treats the symbol as a generator 
# function over values or atoms that returns an iterator. 
# The symbol is first translated into a function invocation. 
# Normalization then flattens the arguments into atoms and makes 
# iteration explicit, as it does for any function invocation. 
# For example, &features would be changed to &features(x), 
# normalized, and then mapped to: 
# new IconInvokeIterator({-> IconKeywords.features(x)}). 
#   FunctionOverAtoms, treats the function name as over atoms. 
# Recommended to use with built-in functions only, 
# or with OperatorAsFunction symbols. 
#   OperatorOverIterators Unary/Binary, treats the symbol as 
# a composition over iterators that returns an iterator. It 
# applies the operation directly to (x) or (x,y,...) respectively, 
# where looks in Unary if there is 1 operand and Binary otherwise. 
# Constructs such as "if x then y" would be changed to if(x,y). 
#   OperatorOverAtoms Unary/Binary, treats the symbol as 
# an operator over atoms that returns an atom. 
# Promotes the operation to an iterator as: 
# new IconOperation(UnaryOperation).over(x) or 
#  (BinaryOperation).over(x,y,...), 
# where looks in Unary if there is 1 operand and Binary otherwise. 
#   SymbolAsIterator, treats &keyword as a field holding an iterator. 
# This is the default used for &keywords. 
#   SymbolAsVariable, treats &keyword as an object reference to a 
# static field in a single class. 
#   SymbolAsProperty, treats &keyword as a property with get() and set() 
# methods, i.e., an atom that implements IIconAtom. 
# For example: &subject => IconKeywords.subject 
#   SymbolAsValue, treats &keyword as a literal value. 
#   Default is: 
# if operation, new IconOperation(default operator).over(x,y,...) 
# if control construct, default is to capitalize: IconIf(x,y) 
# if keyword, new IconNullIterator() 
#   where default operator is: 
#  ($x,$y)->$x $op $y
#   or ($x) -> op $x 
# Substitutes: $x, $y, $op for unique x and y and operator symbol. 
# IconOperatorIterator assumes operator is left-associative, and 
# automatically translates variadic (x+y+z) to (x+y)+z 
# to decompose construct into binary operations. 
# Other OperatorOverIterators must handle variadic or fixed args. 
# Augmented assignment uses only OperatorOverAtoms for its operator: 
# if not found there, uses default operator. 
# Assignment is right-associative and recursively decomposed by 
# grammar into only binary operations, so augments will be binary. 
# EXAMPLE of OverAtoms:     IconOperators.plus, where 
# static plus = IconOperator.binary((x,y) -> x + y) 
#  or IconOperator.unary((x) -> + x) 
# EXAMPLE of OverIterators: new IconOperatorIterator(plus).over 
# which is then invoked with "...over(x,y)" 
#==== 
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-->
<entry key="OperatorOverIteratorsBinary">
<props>
<!--  x | y # Concatenation  -->
<prop key="|">new IconConcat</prop>
<!--  x\limit # Limit iteration  -->
<prop key="\">new IconLimit</prop>
<!--  s?e # String scanning  -->
<prop key="?">new IconScan</prop>

</props>
</entry>
<entry key="OperatorOverIteratorsUnary">
<props>
<!--  |x  # Repeat until empty  -->
<prop key="|">new IconRepeatUntilEmpty</prop>
<!--  <>x # Wrap generator as singleton iterator  -->
<!--  <prop key="&lt;>">new IconFirstClass</prop> 
   -->
<!--  [: x # List comprehension  -->
<prop key="[:">new IconListComprehension</prop>

</props>
</entry>
<!--

#==== 
# OperatorAsGenerator: used for operators over atoms that 
# return an iterator.  The operator is changed into 
# an iterator over atoms after normalizing out its arguments. 
# Treated like a function by normalization. 
#==== 

-->
<entry key="OperatorAsGenerator">
<props>
<prop key="!">new IconPromote</prop>
<prop key="to">new IconToIterator</prop>

</props>
</entry>
<!--

#==== 
# OperatorAsFunction: used for operators over atoms or values that 
# return an iterator  The operator is changed into 
# a function call after normalizing out its arguments. 
# Treated like a function by normalization. 
# OverValues is default unless used with FunctionOverAtoms. 
#==== 

-->
<entry key="OperatorAsFunction">
<props>
<!--
 !x   # Lift collection or Java iterator to generator 

-->
<!--  f!x  # Handled in normalization => f(x.toArray())  -->
<!--  x to y by z  # Prototypical generator function  -->
<!--

  <prop key="to">IconOperators.to</prop>  
  <prop key="!">IconOperators.promote</prop>  
  

-->
<!--  |<>| f(e)  # Data-parallel => |> parallel(<>f,<>e)  -->
<prop key="|<>|">parallel</prop>
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<!--  &features    # No-arg &keyword  -->
<prop key="&features">IconKeywords.features</prop>

</props>
</entry>
<!--

#==== 
# FunctionOverAtoms: used for built-in functions over atoms. 
#==== 

-->
<entry key="FunctionOverAtoms">
<props>
<!--

  <prop key="put">IconFunctions.putOverAtoms</prop>  
  <prop key="ishift">IconFunctions.ishiftOverAtoms</prop>  
  

-->
</props>

</entry>
<!--

#==== 
# OperatorOverAtoms: used for operations over atoms that return atoms. 
#==== 

-->
<entry key="OperatorOverAtomsBinary">
<props>
<prop key="+">IconOperators.plus</prop>
<prop key="-">IconOperators.minus</prop>
<prop key="*">IconOperators.times</prop>
<prop key="/">IconOperators.division</prop>
<prop key="%">IconOperators.remainder</prop>
<prop key="^">IconOperators.powerOf</prop>
<prop key="=">IconOperators.sameNumberAs</prop>
<prop key="==">IconOperators.sameStringAs</prop>
<prop key="===">IconOperators.sameValueAs</prop>
<prop key="~=">IconOperators.notSameNumberAs</prop>
<prop key="~==">IconOperators.notSameStringAs</prop>
<prop key="~===">IconOperators.notSameValueAs</prop>
<prop key="<">IconOperators.lessThan</prop>
<prop key="<=">IconOperators.lessThanOrEquals</prop>
<prop key=">">IconOperators.greaterThan</prop>
<prop key=">=">IconOperators.greaterThanOrEquals</prop>
<prop key=">>">IconOperators.stringGreaterThan</prop>
<prop key=">>=">IconOperators.stringGreaterThanOrEquals</prop>
<prop key="<<">IconOperators.stringLessThan</prop>
<prop key="<<=">IconOperators.stringLessThanOrEquals</prop>
<prop key="++">IconOperators.setUnion</prop>
<prop key="--">IconOperators.setDifference</prop>
<prop key="**">IconOperators.setIntersection</prop>
<prop key="||">IconOperators.stringConcat</prop>
<prop key="|||">IconOperators.listConcat</prop>
<prop key="@">IconOperators.activate</prop>
<prop key="@>">IconOperators.send</prop>
<prop key="@>>">IconOperators.blockingSend</prop>
<prop key="<<@">IconOperators.blockingReceive</prop>

</props>
</entry>
<entry key="OperatorOverAtomsUnary">
<props>
<prop key="+">IconOperators.plusUnary</prop>

137



<prop key="-">IconOperators.minusUnary</prop>
<prop key="=">IconOperators.tabMatch</prop>
<prop key="*">IconOperators.timesUnary</prop>
<prop key="?">IconOperators.questionMarkUnary</prop>
<prop key="\">IconOperators.failIfNull</prop>
<prop key="/">IconOperators.failIfNonNull</prop>
<prop key=".">IconOperators.dereference</prop>
<prop key="~">IconOperators.csetComplement</prop>
<prop key="^">IconOperators.refresh</prop>
<prop key="@">IconOperators.activate</prop>
<prop key="<@">IconOperators.receiveUnary</prop>
<prop key="<<@">IconOperators.blockingReceiveUnary</prop>

</props>
</entry>
<!--

#==== 
# UndoFunction: maps symbol to an undo factory and marks it as undoable. 
#==== 

-->
<entry key="UndoFunction">
<props>
<prop key="tab">IconScan.createUndo()</prop>
<prop key="move">IconScan.createUndo()</prop>
<prop key="<-"/>
<prop key="<->"/>

</props>
</entry>
<!--

#==== 
# SymbolAsValue: maps symbol such as &null into a literal value. 
# Literal values won't be lifted to an interator in normalization 
# when they are function arguments. 
#==== 

-->
<entry key="SymbolAsValue">
<props>
<!--  &null  # No-arg &keyword  -->
<prop key="&null">null</prop>

</props>
</entry>
<!--

#==== 
# SymbolAsVariable: maps symbol such as &digits into an object reference 
# For example, &subject => IconKeywords.subject 
# The simple object reference is then treated as an assignable  
# variable by the transforms. 
#==== 

-->
<entry key="SymbolAsVariable">
<props>
<!--  &digits # No-arg &keyword  -->
<prop key="&digits">IconKeywords.digits</prop>
<prop key="&cset">IconKeywords.cset</prop>

</props>
</entry>
<!--

#==== 
# SymbolAsProperty: maps symbol such as &subject into a property 
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# with get() and set() methods, i.e., an IIconAtom. 
#==== 

-->
<entry key="SymbolAsProperty">
<props>
<!--  &subject # No-arg &keyword  -->
<prop key="&subject">IconKeywords.subject</prop>
<prop key="&pos">IconKeywords.pos</prop>
<prop key="&current">IconKeywords.current</prop>
<prop key="&source">IconKeywords.source</prop>
<prop key="&main">IconKeywords.main</prop>
<prop key="&time">IconKeywords.time</prop>

</props>
</entry>
<!--

#==== 
# SymbolAsIterator: maps symbol such as &fail into an iterator. 
# Symbols defined this way must map to a new or method invocation 
# that returns a mutable iterator. 
#==== 

-->
<entry key="SymbolAsIterator">
<props>
<!--  &fail # No-arg &keyword  -->
<prop key="&fail">new IconFail()</prop>

</props>
</entry>

</map>
</property>

</bean>
<!--

#=============================================== 
# Script engine handler for scripting substrates 
#=============================================== 

-->
<bean id="DefaultSubstrate"
class="edu.uidaho.junicon.interpreter.interpreter.AbstractSubstrate">
<property name="parent" ref="JuniconInterpreter"/>
<property name="logger" ref="DefaultLogger"/>
<property name="quietScriptExceptions" value="false"/>
<!--  
    <property name="defaultLineSeparator" value="\n"/> 
     -->
<property name="scriptEngineManager">
<bean class="javax.script.ScriptEngineManager"></bean>

</property>
<property name="defaultScriptExtension" value="groovy"/>
<property name="defaultScriptEngine">
<bean
class="edu.uidaho.junicon.substrates.groovy.groovyshell.GroovyScriptEngineImports">
</bean>

</property>
</bean>

</beans>
<!--  END OF FILE  -->

139




