

A Transformational Interpreter for Goal-Directed Evaluation

Peter Mills and Clinton Jeffery

Unicon Technical Report 17

June 12, 2014

Abstract

We develop a Java-based interpreter for the Unicon programming language

using transformation, first into an iterator calculus and from there into the

dynamic language Groovy. In Unicon every expression is a generator that

produces values until it fails, and operations are conditioned on success and

failure. The transformations first normalize primary expressions by flattening

nested generators and making iteration explicit. Control constructs are then

translated into an iterator calculus for composing suspendable generators.

Lastly, methods are mapped onto the Java class model using variadic lambda

expressions. The transformations, expressed in XSLT, are also retargeted to

Java to enable later compilation.

Unicon Project

http://unicon.org

Department of Computer Science

University of Idaho

Moscow, ID, 83844, USA

A Transformational Interpreter for Goal-Directed Evaluation

PETER MILLS and CLINTON JEFFERY, University of Idaho

We develop a Java-based implementation of the Unicon programming language using high-level program

transformation, first into an iterator calculus and from there into the dynamic language Groovy. Unicon is

an object-oriented descendent of Icon, a unique language where every expression is implicitly a generator

that iteratively produces a value until it fails, and where operations are conditioned on the success of their

operands. To align Unicon with native invocation mechanisms, the transformations first reduce primary

expressions to a normal form that flattens nested generators and makes iteration explicit. Control

constructs and operations are then translated into an iterator calculus that composes suspendable

generators using forms such as product, concatenation, map, reduce, and exists. The calculus is

implemented as a compact Java kernel that presents a stream-like interface. Lastly, Unicon methods as

well as Icon procedures are mapped onto the Java class model using variadic lambda expressions. The

transformations are implemented using XSLT (XML Language for StyleSheet Transformations), a rule-

based language for transforming XML documents, and housed in a generic transformational interpreter.

The interpreter, which we call Junicon, functions both interactively and, with only slight modification to

the transformations, as a tool that translates its input directly to Java for later compilation that is free of

dependencies. Such a transformational approach realizes a lightweight and retargetable implementation

that can seamlessly integrate with and leverage the full range of Java capabilities, including its portability

and facilities for concurrency and graphics.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory;

D.3.2 [Programming Languages]: Language Classifications – Very high-level languages, Icon; D.3.4

[Programming Languages]: Processors – Code generation, Interpreters, Retargetable compilers; I.1.3

[Symbolic and Algebraic Manipulation]: Languages and Systems – Evaluation strategies; I.2.2

[Symbolic and Algebraic Manipulation]: Automatic Programming – Program transformation

General Terms: Languages, Design, Theory

Additional Key Words and Phrases: Unicon, generators, iterator calculus, program migration, XSLT,

Groovy, Java

1. INTRODUCTION

The goal-directed evaluation paradigm underlying Icon [Griswold et al. 1981;

Griswold and Griswold 1996] and its object-oriented descendent Unicon [Jeffery 2001;

Jeffery 2013a; Jeffery 2013b] poses formidable challenges in implementation. Icon is

a unique language where every expression is implicitly a generator, and where

evaluation of an expression is conditioned on the success or failure of its components.

For example, the meaning of the simple expression "f(1 to 2)" is an iterator that

yields the results of f(1), followed by f(2), and then failure since (1 to 2) has

terminated and failed. The notion of generator functions has its origin in the

Author’s addresses: P. Mills (corresponding author) and C. Jeffery, Department of Computer Science,

University of Idaho, Moscow, ID.

Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies show this notice on the first page or initial screen of a display along with the full citation.

Copyrights for components of this work owned by others must be honored. Abstracting with credits

permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any

component of this work in other works requires prior specific permission.

2 P. Mills and C. Jeffery

language CLU, where a function can yield a result and then suspend until the next

value is needed [Liskov et al. 1977; Liskov et al. 1981]. In Icon this concept is

extended into an extremely compact and dynamically typed notation that implicitly

composes nested generator expressions, and where such iterators are terminated by

failure.

As such the semantics of Icon, and in turn its implementation, is fairly complex,

as evidenced in various techniques that have been investigated for its translation.

One notable effort in particular focused on a Java bytecode generator for Icon called

Jcon [Proebsting and Townsend 2000] that employed a Prolog-like Byrd-box model

using fail and resume ports [Proebsting 1997]. A number of other studies have

looked at continuation-based approaches for implementation [O'Bagy and Griswold

1987; Allison 1990; O'Bagy et al. 1993] as well as for formally defining the semantics

of Icon, including a denotational semantics [Gudeman 1992] and a semantics based

on list and continuation monads [Danvy et al. 2002]. Despite these efforts, to some

degree the semantics remains clouded and not obvious to the implementer, and this

complexity is reflected in the difficulty of achieving malleable implementations. The

Jcon implementation in particular heavily instrumented data types and expressions

with suspend and resume advice and relied on direct bytecode generation, an

approach which did not permit transparently interfacing with other Java programs

or libraries, or tracking evolving Java technology. Since Unicon is implemented as a

cross-translator into Icon that treats classes as records, similar problems of seamless

integration with Java arise using the above implementation techniques.

We investigate an alternative approach for implementing Unicon based on

program transformation, first into an iterator calculus that distills the essential

concepts in goal-directed evaluation, and from there into another high-level Java-

based scripting language, Groovy. The iterator calculus captures a minimal set of

forms for composing suspendable and failure-driven iterators including product,

concatenation, map, reduce, and exists, and so combines aspects of both functional

languages and predicate logic. This calculus forms the basis for rewriting rules that

first reduce primary expressions such as function invocation and object field

reference to a normal form that is free of nested generators and makes iteration

explicit in order to enable native evaluation. The rewriting rules then equationally

translate control constructs and operations into that simpler basis. A compact kernel

in Java implements the iterator calculus, and serves as the final target of the

transformation rules. To realize the transformations themselves, we employ a novel

technique that uses XSLT (the XML Language for StyleSheet Transformations), a

rule-based language for transforming XML based on XPath pattern matching, to

rewrite XML abstract syntax trees and then deconstruct them into a Groovy program.

Using the above approach of XSLT-based program transformation, we have

implemented a Java-based interpreter for Unicon, called Junicon. Such a

transformational interpreter realizes several advantages. By reducing generator

expressions to a recognizable and explicit form, we clarify the semantics of Unicon so

that it can be understood in terms of conventional programming language concepts,

and enable the grafting of goal-directed behavior onto other languages. By

transforming onto another high-level Java-based dynamic language in a careful

manner that preserves types such as lists using their Java equivalent, we can

seamlessly integrate with and leverage the full range of Java capabilities. Lastly,

the expressiveness of XSLT for program transformation enhances the ability to

retarget the implementation. The ease of retargeting is demonstrated by

parameterizing the transforms to emit Java rather than Groovy code. Using these

A Transformational Interpreter for Goal-Directed Evaluation 3

two sets of transforms, the interpreter is able to act either interactively, or as a tool

that can translate its input to Java for later compilation that is free of dependencies.

In the remainder of this paper we first provide more detailed background on Icon

and Unicon, as well as Groovy. We then describe the iterator calculus and the

transformations from Unicon into it, both for reducing primary expressions to a

normal form free of implicit generators, and for translating control constructs and

classes. We examine how, with only slight modification, the transforms can be

concretely retargeted to Java rather than Groovy. We then illustrate how the

rewriting rules are expressed in XSLT. We also describe the design of the generic

transformational interpreter underlying our implementation that supports multi-

stage transformations and pluggable execution substrates. The results of

benchmarking Junicon when translating to Groovy as well as Java are described, and

show performance comparable to that of native Unicon. Lastly we review related

work, and conclude with a summary of key contributions.

2. BACKGROUND

Icon is a unique programming language designed as the successor to the pattern

matching language SNOBOL [Griswold et al. 1971]. At the heart of Icon is the

notion of a generator, which is an expression whose evaluation lazily yields a

sequence of values, i.e., generates them one at a time on demand. As in CLU and

later languages such as C# [Jagger et al. 2007] and Python [Rossum and Drake 2011],

generators in Icon can be constructed using generator functions that use a "suspend"

statement – corresponding to CLU's "yield" – to return a value and on next

invocation to resume at the point of suspension. For example, the following Icon

procedure, which corresponds to the "to" construct mentioned above, on invocation

will result in a generator that produces an ascending sequence of values:

procedure range (from, bound)

 local count;

 count := from;

 while (count <= bound) do { suspend count; count +:= 1 }

end

Thus, the expression "range(1,2)" yields the values 1 and 2, and then fails. Such

generators can then be used in lieu of collections in loops and list comprehension.

While Icon uses the term generator, we will use the term iterator interchangeably

with it, and will distinguish it from a Java iterator when necessary.

However, Icon goes a step beyond conventional languages in its pervasive use of

generators. In Icon every expression is a generator1, and nested generators are

implicitly composed by mapping functions or operations over the cross-product of

their arguments. For example, the expression

 f(range(1,2), range(3,4))

will, for each value in the first operand range(1,2), iterate through each value in the

second operand range(3,4), and then iterate through each value in the result of

applying f. If f yields a single value, the above results in the sequence: f(1,3), f(1,4),

f(2,3), f(2,4). The implicit composition of nested generators in Icon may be more

clearly understood by decomposing it in terms of Icon's product operator,

1 Strictly speaking, in Icon parlance a generator is an expression that can produce multiple results. In this

paper we use the term generator to include expressions that only produce at most one result.

4 P. Mills and C. Jeffery

 e & e'

which for each x in e, iterates over each y in e', and yields y as the result of iteration.

The above example can thus be recast as an iterator product:

 i := range(1,2) & j := range(3,4) & k := f(i,j)

which corresponds to the Python generator expression:

 (k for i in range(1,2) for j in range(3,4) for k in f(i,j))

and represents nested iteration.

It further bears noting that in Icon procedures are first class citizens, and function

names used in invocation can themselves be generator expressions. For example,

 (f | g)(x)

where | means concatenation of generators, is equivalent to:

 f(x) | g(x)

and so iterates first through f(x) and then g(x). The above implies that method

references, or some form of lambda abstraction, may be required for implementation.

Icon then combines generators with the concept of success and failure to realize

goal-directed evaluation. An expression, at each iteration, succeeds and produces a

value, or fails and terminates the iterator, which in turn fails. In other words,

iterators are terminated by failure of the next() method. Moreover, at each iteration,

an operation will typically be performed only if the operands all succeed, and

otherwise it fails. Thus, expression evaluation is conditioned on the success of its

terms. For example, the expression:

 x := if (k > 0) then k

will perform an assignment to x only if k > 0, since otherwise the "if" expression fails,

which in turn causes the assignment to fail. In Icon, the concept of true or false is

thus replaced with success and failure, and failure propagation is analogous to a

bottom-preserving or undefined-preserving semantics. Failure propagation similarly

applies to function invocation as well as to operations such as product. For example,

"f(x,y)" will fail if either of the arguments x or y fails, and thus not be invoked.

Similarly, in the iterator product operation "x & y", if at a given iteration point the

precondition x fails, then y is not evaluated. Thus the & operator embodies notions

both of cross-product as well as conditional evaluation.

It is important to note that, since every expression is a generator, their

composition in control constructs, and in the program in toto, from a semantic

viewpoint just yields one large iterator. Even the familiar sequence construct, a;b, is

special in that it denotes the concatenation of iterators, with all but the last iterator

forced to be a singleton limited to producing at most one result before failure. The net

effect of the sequence construct is thus to run through each singleton iterator, called

a bounded expression, until failure, and then delegate remaining iteration to the last

term. Actual iteration over a composed iterator expression, i.e., executing the

iterator's next(), only occurs at the outermost level of interaction. These points occur

at interpreted statements outside a class definition, in class field initializers, and in

the main method of a program.

Icon further provides an expressive reference semantics that supports lazy

dereferencing. Variable references are treated as first-class citizens in generator

expressions, and are only dereferenced when needed, for example as arguments to

A Transformational Interpreter for Goal-Directed Evaluation 5

operators or methods, the latter which thus have call-by-value semantics. For

example, in the expression:

 (if i > j then i else j) := 0

the value 0 is assigned to i or j depending on their comparison. Under the hood, the

generator on the left-hand-side of the assign produces a reference to i or j, which is

then used by the assignment operator. Indexing operations are also first class

citizens, in that an index such as c[i] is maintained as an offset into a collection until

its value is needed, and so provides an updatable reference.

Icon also provides a notion of reversible assignment, x <- y, which on more than

one iteration, reverses the assignment and then fails. For example, in the unbounded

expression (x <- y) & e, if e fails, x will revert to its original value. Reversible

assignment, along with string scanning, is one of the few vestiges of implicit data

backtracking in Icon, since elsewhere state is not saved or restored. Icon's treatment

of variable and index references as first-class citizens implies that some form of

reification is needed when transforming to another high-level language.

Unicon in turn is an object-oriented extension of Icon which provides support for

classes with multiple inheritance in a manner similar to that of C++. Unicon is

currently implemented by a preprocessor that translates its programs into Icon by

treating classes as records, and so any challenges in implementing a Java version of

Icon hold for it as well.

In contrast, Groovy [Dearle 2010] is a fairly conventional object-oriented dynamic

language that extends the pre-lambda version of Java [Gosling et al. 2014] with

parameterized closures, and which is implemented by compilation into Java bytecode

that runs on any Java virtual machine. Like Icon, Groovy is dynamically typed, in

other words variables need not be declared as having a type. Groovy also provides

seamless integration with Java, in that Groovy class instances and data types can be

transparently passed to and from Java, with class fields accessed, and similarly

methods invoked, from either side. A notable feature of Groovy is its provision for

parameterized closures, which expresses lambda abstraction, also called lambda

expressions in Java. For example,

 def f = {x,y -> x+y}

defines f as a function formed from the closure of the expression to the right of the

arrow, and with parameters x and y. A closure in Groovy always returns the last

argument. As expected, f(1,2) will thus yield the value 3. The above features, in

particular its relaxed typing and its provision of closures, make Groovy an attractive

translation target for Unicon.

While Unicon is a powerful language whose dynamic typing makes it easy to use,

there is to date no viable Java implementation of it, nor arguably a clear operational

semantics of its underlying goal-directed evaluation that would drive such an

implementation. Yet a Java implementation of Unicon, or more precisely an

interpreter for Unicon that would run within the Java Runtime Environment, has

many potential advantages. These advantages include portability, access to Java

concurrency and graphics utilities, the use in web applications, and the potential to

integrate into the increasingly widespread Java-and-Linux-based Android Operating

System for mobile handhelds. In contrast to earlier efforts for a Java based Icon

implementation, our research focuses on higher-level cross-translation that

maintains consistency with the Java type system.

6 P. Mills and C. Jeffery

3. TRANSFORMATION OF UNICON INTO GROOVY

Program transformation is a broad term that refers to changing the form of a

program into another one that is semantically equivalent, or, for example in some

cases of refinement, more specific [Feather 1987; Reddy 1990; Li 2010]. While

program transformation encompasses translation, which includes compilation and

interpretation, as well as the formal refinement of specifications and rephrasing, our

focus here is on what is sometimes called migration, that is, translation into another

language at the same level of abstraction [Visser 2005]. It bears emphasizing that

the techniques described in this paper are made possible by having either the

transformation source or target be a dynamically typed language; in the presence of

static typing and complex type systems, the problem of transformation is vastly more

complex.

The transformation of Unicon into Groovy is broken down into four stages: a

transformation 𝒩 for normalization of primary expressions, a transformation 𝒯 that

translates larger expressions including control constructs and operations into an

iterator calculus, a transformation 𝒦 that concretizes the iterator calculus into

Groovy, and finally a transformation 𝒞 that handles classes and methods.

3.1 Normalization of primary expressions

A key goal in the transformation of Unicon into Groovy is to maximally preserve type

declarations and their use in function invocations and field references, so as to enable

the use of native evaluation mechanisms and their concomitant optimization, as well

as seamless integration with Java. Here, field reference means reference to an

object’s fields using dot notation. For example, we would want the class definitions,

variable declarations and simple method invocations such as "o.f(x,y)" to be left

largely unchanged in migrating from Unicon to Groovy, and avoid elaborate

reflection mechanisms or extensive instrumentation that might preclude

optimizations or that might hinder interfacing with Java. Following the above line of

argument, more complicated expressions in Unicon that embody nested generator

expressions must be reduced to the above simple form in a manner that makes

iteration explicit.

To make iteration explicit, we introduce an operator for bound iteration, and

decompose nested generators into products of such bound iterators. Consider the

following example:

 f(g(x))

This can be equivalently decomposed into:

 (i in x) & (j in g(i)) & (k in f(j))

where & denotes iterator product, and (i in e) denotes bound iteration that assigns

each value in the iterator sequence for e to a variable i. The final result of the above

expression will be a sequence whose values are bound to k. It bears noting that, in

general, the iterator product and bound iteration operators used in the above

decomposition are sufficient to express lazy list comprehension. For example, a

Python generator expression

 f(x) for x in S if P(x)

is equivalent to

 (x in S) & P(x) & f(x).

A Transformational Interpreter for Goal-Directed Evaluation 7

A similar flattening technique can be applied to more complicated expressions

involving field reference and indexing in addition to function application, and where

functions are allowed to be expressions that resolve to method references. Consider

the following example of a primary expression:

 e(ex,ey).c[ei]

This can be equivalently reformulated as:

 (f in e) & (x in ex) & (y in ey) & (o in f(x,y)) & (i in ei) & (j in o.c[i])

In the above rewriting, for each step in the primary from left to right, generator

expressions have been moved outside into explicit bound iterators, and the pieces of

the primary chained together using these bindings. The final result of the above

expression will be a sequence whose values are bound to j. The above reformulation,

if applied recursively to a more complicated expression, extracts implicit generators

and makes iteration explicit, reducing the expression to a normal form that is free of

nested generators. The remaining residual expressions can then be evaluated using

mechanisms native to the translation target, avoiding more complicated and

potentially costly mechanisms such as reflection or extensive instrumentation. In

particular, by leaving index operations in their native form, the above approach

potentially allows leveraging advanced capabilities such as those found in Groovy

that blur the distinction between objects and maps, and so for example allow field

access using o["f"]. Normalization thus aligns Unicon with a more conventional

semantics for list comprehension and method invocation, clarifying its meaning as

well as placing it into a form more amenable to native evaluation.

In general the above rewriting is applied to arbitrarily complex primary

expressions such as:

 e.f(x,y).c[i](z)

that consist of a combination of field reference, invocation, and indexing, and whose

terms are identifier and literal atoms as well as generator expressions. Primary

expressions also include collection literals such as [x,y] and [k:v,...] for list and map

construction, respectively. Since expressions may evaluate to method references, one

may also chain method invocations and indexing together, e.g., f(x)[i](y). It bears

noting that previous semantic treatments [Gudeman 1992; Danvy et al. 2002] did not

explicitly address function application using such method expressions, nor did they

address propagating generators through the fields in object references. Thus the

above formulation of normalization is a step forward in making clear the semantics of

generator propagation.

The syntax for the subset of Unicon that is to be normalized is shown in Figure 1.

We slightly extend Unicon syntax to incorporate several useful features such as local

declarations within blocks, lambda expressions, allocation using new C(e) in addition

to Unicon's function-like construction using C(), and method references using o::m. As

is further discussed in Section 4, the new construct as well as method references are

provided to support accessing native Java classes and methods from within Junicon.

Primary expressions, which consist of field references, function invocation, and

indexing as well as identifiers, literals, and collections, are shown in the bottom of

Figure 1.

The rewriting rules that reduce primary expressions to normal form are shown in

Figure 2, and define the normalization transform 𝒩. We make the normalization

transform 𝒩 independent of the later transforms for control constructs and classes,

so as to enable staging them separately. Although it is feasible to equivalently define

8 P. Mills and C. Jeffery

𝒩 to be recursively dependent on 𝒯, the above independence of 𝒩 is desirable, since

normalization reflects aligning generator expressions with a more conventional

semantics, and 𝒩 can then be used as a standalone transformation to graft such a

capability onto other languages. The latter is the approach taken in our

implementation, and is reflected both in the XSLT transforms as well as the staged

structure of the generic transformational interpreter, described later.

The normalization transform thus begins by, for a given program consisting of

larger expressions such as control constructs and operators, descending into primary

expressions through a default rule that recurses down through non-primaries

otherwise leaving them unchanged. For a non-primary expression or construct c

composed of terms ti, the rule is a homomorphism over its terms:

 ⟦c⟨t1,…,tn⟩ ⟧𝓝
p

 c⟨⟦t1⟧𝓝
p

 ,…, ⟦tn⟧𝓝
p

⟩

We define 𝒯 to analogously leave primaries alone, since they will have already been

normalized. The normalization transform also has preprocessing rules that change

certain constructs such as "new" and "to" into function calls, so that their arguments

can be normalized. In particular the "to" construct is a prototypical generator

function, since unlike other constructs it returns a generator when given non-

generator arguments. Such ersatz function invocations are later rewritten back into

allocation and range expressions respectively.

For a given primary expression, 𝒩 then proceeds left to right along the fields and

arguments inside it, decomposing field references and invocations into separate

iterator product steps, and extracting complex fields and arguments into bound

iterators. Along the way, 𝒩 carries the accumulated object reference p, or prefix, to

be used as the function or collection name in the decomposed invocation and indexing

steps.

In the rewriting rules, lifting is denoted by ! x, which reifies x and promotes it to

an iterator, while x denotes dereference of a reified value. Lifting a variable x

Fig. 1. Syntax of expressions to be normalized.

E ::= Control | Block | Closure | Operation | Primary

Control ::= if E1 then E2 [else E3]

 | E1 to E2 [by E3] | every E1 [do E2]

 | while E1 [do E2] | until E1 [do E2]

 | repeat E | not E

 | suspend E1 [do E2] | return [E] | fail

Block ::= { E1 ; ...; En } | { local y1[:= E𝑦
1]; …; local ym[:= E𝑦

𝑚]; E1 ; ...; En }

Closure ::= { (x1,…,xp) -> local y1[:= E𝑦
1]; …; local ym[:= E𝑦

𝑚]; E1 ; ...; En }

Operation ::= E1 & E2

 | E1 | E2

 | E1 op E2

 | op E where op in +, -, :=, …

 | new Dotname(E1, …, En)

Primary ::= identifier | literal

 | (E) | [E1, ..., En]

 | [E𝑘
1 :E𝑣

1, ..., E𝑘
𝑛 :E𝑣

𝑛]

 | E(E1, ..., En)

 | E[E1, ..., En]

 | E.identifier

 | Dotname::identifier

Dotname ::= identifier | Dotname.identifier

where xi, yi are identifiers

A Transformational Interpreter for Goal-Directed Evaluation 9

concretely turns it into a property whose get and set methods are initialized using

closures, e.g.,

 get = {-> x} ; set = {rhs -> x=rhs }

and then wraps it in a singleton iterator that produces the property on iteration.

Lifting f(x) takes the closure of f(x) and promotes it to a restartable iterator that

delegates to the generator produced by its invocation, reifying the generator results

as needed. For functions which are not generators, e.g., normal Java methods, the

invocation is promoted to a singleton iterator. Lifting c[i] reifies the index operation

and promotes its evaluation to a singleton iterator that returns an assignable

reference. Lifting thus ensures, first, that arguments and results are treated

uniformly as iterators. Second, its use of reification with closures accommodates

Fig. 2. Normalization of primary expressions.

⟦e⟧𝓝 ⟦e⟧𝓝
∅ where e is any expression // Entry into transforms using empty prefix

⟦c⟨t1,…,tn⟩ ⟧𝓝
p

 c⟨⟦t1⟧𝓝
p

 ,…, ⟦tn⟧𝓝
p

⟩ where c is a non-primary with terms ti // Descend into primaries

⟦ex to ey by ez⟧𝓝
p

 ⟦range(ex, ey, ez)⟧𝓝
p

 // Synthetic functions for higher-order generators

⟦new C(e)⟧𝓝
p

 ⟦C.new(e)⟧𝓝
p

⟦e.e' ⟧𝓝
p

 (o in ⟦e⟧𝓝
p

) & ⟦e'⟧𝓝
p ′

 where p'= o, the dereference of o // Field reference

⟦e(e')e"⟧𝓝
p

 (o in ⟦e⟧𝓝
p

) & ⟦o(e')e"⟧𝓕 where e"=(e1")…[ei"]… or [e1"]…(ei")… // Invoke

⟦p(e1,...,en)e"⟧𝓕 (x1 in ⟦e1⟧𝓝
∅) & ... & (xn in ⟦en⟧𝓝

∅) & (o in ! ⟦p(x1,...,xn)⟧𝓞) & ⟦oe"⟧𝓕

⟦p(e1... , , ...en)⟧𝓞 p(e1... , omit , ...en) where skip last product if e"= ∅

⟦e[e']e"⟧𝓝
p

 (o in ⟦e⟧𝓝
p

) & ⟦o[e']e"⟧𝓕 where e"=(e1")…[ei"]… or [e1"]…(ei")… // Index

⟦p[e1,...,en]e"⟧𝓕 ⟦p[e1]... [en]e"⟧𝓕

⟦p[e']e"⟧𝓕 (x in ⟦e'⟧𝓝
∅) & (o in ! p[x]) & ⟦oe"⟧𝓕 where skip last product if e"= ∅

⟦x⟧𝓝
p

 !p.x where x is an identifier in the last field of an object reference // Simple atom

⟦x⟧𝓝
∅ !x where x is an identifier or literal outside of a complex primary

⟦e::f⟧𝓝
p

 ⟦e ⟧𝓝
p

::f // Method reference

⟦[e1,...,en]⟧𝓝
p

 (x1 in ⟦e1⟧𝓝
∅) & ... & (xn in [en⟧𝓝

∅) & ![x1,...,xn] // List

⟦[ek
1:ev

1,...,ek
n:ev

n]⟧𝓝
p
 (k1 in ⟦ek

1⟧𝓝
∅) & (v1 in ⟦ev

1⟧𝓝
∅) & ... & // Map

 (kn in ⟦ek
n⟧𝓝

∅) & (vn in ⟦ev
n⟧𝓝

∅) & !⟦k1:v1,...,kn>:vn]

where !e denotes lifting of a primary expression, which reifies e and promotes it to an iterator, and e

denotes the dereference of a reified variable or value. Invocation delegates to the returned

generator; otherwise lifting gives a singleton iterator that yields one result before failing.

We skip bound iterator creation (o in ⟦e⟧𝓝
p

) if e is a simple term consisting of an identifier or literal, or a

field reference, method reference, or collection literal composed of only simple terms, and just use

the prefixed original term p'= p.e (or p'=e if p=∅) instead of o in the above products.

We skip bound variable creation (o in ⟦e⟧𝓝
p

) if ⟦e⟧𝓝
p

 is a product that ends in an iterator with binding b,

or is itself such an iterator, and just use ⟦e⟧𝓝
p

 with p'=b instead of o in the above products.

For example, (o in (b in e)) becomes just (b in e).

We also skip bound variable creation (o in !p(x)) or (o in !p[x]) for the last invoke or index step in a

primary, and just lift the last product term, since there is no further need for chaining.

For example, x.f(y)[z] (o in !x.f(y)) & !o[z].

Lastly, for efficiency we skip over redundant parenthesis, i.e., ⟦((e))⟧𝓝
p

 ⟦(e)⟧𝓝
p

 , and ⟦(e)⟧𝓝
p

 ⟦e⟧𝓝
p

if not inside a primary.

10 P. Mills and C. Jeffery

Unicon’s reference semantics, enables generator expressions to be used as first-class

citizens, and makes the iterators capable of being restarted on failure. Lifting can be

seen as being analogous to the monad return operator.

The above transforms must be similarly applied to all invocation and indexing

arguments when there are multiple arguments, for example in

 e(e1,...,en) or e[e1,...,en]

where multidimensional indexes are first reduced to chains of single index steps.

Moreover, to optimize the number of bound iterators, we skip the creation of bound

iterators (o in ⟦e⟧𝓝
p

) if e is a simple term consisting of an identifier or literal, or a field

reference, method reference, or collection literal composed of only simple terms, and

just use the prefixed original term p.e instead of o in the above products. We also

skip the creation of bound iterators if ⟦e⟧𝓝
p

 ends in a created iterator, and use its last

binding instead of o. These optimizations avoid synthesizing unnecessary bound

iterators, and shorten the chain of iterator products. For example, for e(x,e') where x

is an identifier, the rewriting would yield:

 (f in e) & (y in e') & (z in !f(x,y))

Since lifting only occurs when creating bound iterators, under the above

optimizations only invoke and index, and simple terms such as identifiers, literals,

and residual field references and method references that appear outside a primary

field or argument, are lifted.

Normalization thus flattens nested generators into a more conventional form that

expresses lazy list comprehension. In Icon and Unicon, since everything is a

generator expression, normalization and generator propagation is pervasive, and so a

statement or method is in effect one giant comprehension. However, we envision that

it would also be useful to have the capability to limit where normalization and

generator propagation occurs.

We enable such a capability through the provision of scoped annotations. Scoped

annotations, also called X-annotations, are a novel syntax that blends Java

annotations and XML, and have the following admissible forms:

 @<tag attr1=x1 … attrn=xn> expression @</tag>
 @<tag attr1=x1 … attrn=xn />
 @<tag(x1, ... ,xn)> expression @</tag>
 @<tag(x1, ... ,xn)/>

Unlike conventional Java annotations that modify type declaration or use, scoped

annotations can in addition modify expressions as well as arbitrarily delimited

sections of code. For example,

 @<script lang="groovy"> x = f(g(y)); @</script>

forgoes transformation and pipes the code to Groovy for native evaluation. The

unique syntax of scoped annotations is driven in part by the fact that Unicon already

uses the @ operator for its co-expression construct. Junicon uses such annotations as

directives to guide interpretation, as well as to attach metadata to types and

expressions.

In a dual manner, scoped annotations could also be used to selectively graft goal-

directed evaluation onto other languages such as Groovy and Java. For example,

 @<generator> x = f(g(y)); @</generator>

A Transformational Interpreter for Goal-Directed Evaluation 11

could be used to delimit the sections of code where implicit generator propagation

occurs, in effect providing a scope for forming a sequence comprehension.

3.2 The iterator calculus

The iterator calculus distills the essential concepts of goal-directed evaluation, and

provides a minimal spanning set of operators for composing iterators into which

Unicon expressions and control constructs can be translated. As can be seen from the

preceding discussion, product, bound iteration, and lifting are the first entries in the

calculus needed for normalization, and effect lazily evaluated list comprehension.

The full calculus for iterator composition is shown in Figure 3. It bears noting that

map and forall are included as convenience mechanisms for optimizing the

implementation, and can be equivalently expressed using product and reduce,

respectively.

A Java kernel implements the above calculus in a single compact class,

IconIterator, that provides the core logic for iteration that is failure-driven,

suspendable, restartable, and optionally reversible. While the IconIterator class

implements the java.util.Iterator interface, it differs in that failure on next()

terminates the iterator, as indicated by both an isFailed property and an enumerated

return value of fail. After failure, the iterator is then restarted on the following next().

Unlike other language extensions that implement suspend in iterators using

multithreading, such as can be found for Groovy and Java, in Junicon suspend is

tightly integrated into the kernel. Suspend could quite simply be implemented by, on

Fig. 3. Syntax of the iterator calculus.

I ::= I1 & I2 Product, i.e., for each i in I1 { for each j in I2 }

| I1 | I2 Concatenation, i.e., {for each i in I1}; {for each j in I2}

| Ig -> I1 | I2 Choice, i.e. if exists(Ig) then iterate over I1, else iterate over I2

| I* Repeat iterator as long as it produces a non-empty sequence, i.e., succeeds at least once

| I:n Limit iterator to at most n results, then force failure

| ! P Lift normalized primary expression, i.e., promote it to an iterator

| x in I Bound iteration, i.e., bind variable x to iterator results

| reduce op I At each iteration, iteratively combine results from I until it fails, and return a

 singleton result, or fail if the operator fails or the operand sequence is empty

| map op I Map operator over iterator, or if product, over pairs of its operands

 map op (I1 & I2) is equivalent to (x in I1) & (y in I2) & (! x op y)

| forall I Reduce by, at each iteration, iterating over I until failure, then fails

 (equivalent to reduce noop I)

| exists I Succeed if non-empty, i.e., produces at least one successful result

| not I At each iteration, succeed on failure, and fail on success

| suspend I Suspend after each iteration, yielding the value from I, i.e.,

 forces ancestors to revisit the argument’s next() until it fails

| return I Return exists(I), i.e., forces ancestors to succeed and then terminate

| fail Constant iterator that always fails

| (I) Parenthesized expression

| Closure() Invoke closure, used to translate blocks into an iterator bound to local declarations

P ::= Atom | Atom(A1,...,An) | Atom[A1,...,An] | Closure // Normalized primary

Closure ::= { (x1,…,xp) -> local y1;…; local ym; I }

Atom ::= Name | Name.Dotname | Dotname::identifier // Simple normalized primary

Name ::= identifier | identifier | literal // Simple identifier or literal

 | [A1,...,An] | [A𝑘
1 :A𝑣

1 , ..., A𝑘
𝑛 :A𝑣

𝑛]

Dotname ::= identifier | Dotname.identifier

where xi, yi are identifiers, Ai are atoms, and x = x.deref() is the dereference of a reified variable.

12 P. Mills and C. Jeffery

a next(), skipping down the iterator expression tree to the point of suspension, which

only requires traversing left instead of right if the left child is suspended. However,

we further optimize the kernel for an outermost expression to statefully resume to its

point of suspension, thus incurring zero cost for suspends. The reduction of Unicon to

an iterator calculus thus reflects a purely iterator-oriented view of its semantics,

rather than one that is based on notions of continuation-based control backtracking.

Nested instantiations of subtypes of the IconIterator class, reflecting the iterator

expression tree, then serve as the final target of the transformation rules. The

transformation that concretely takes the iterator calculus into the Java kernel is

denoted by 𝒦. For example, I &J is translated as follows:

⟦I & J⟧𝓚 new IconProduct(⟦I⟧𝓚, ⟦J⟧𝓚)

Interestingly, for operations such as I +J, instead of normalizing the expression into

an iterator product

(i in I) & (j in J) & (k in ! i+j)

which would work, we instead build a map operation into the class performing the

iterator product, IconIterator, so that it performs the operation at each product pair

if the operands succeed. In monad terminology, the above corresponds to bind, which

consists of join over map. Thus, the operation I +J is translated to:

⟦I + J⟧ 𝓣 new IconProduct(⟦I⟧𝓚, ⟦J⟧𝓚).map(new IconOperator({x,y -> x+y}))

although for efficiency we actually only define operators once.

The iterator calculus is loosely derived from a combination of functional forms

[Backus 1978], guarded commands such as in GCL [Dijkstra 1975] and CSP [Hoare

1978], and first-order predicate calculus. Unlike typical mechanisms for lazily

evaluated sequence comprehension, the iterator calculus allows specifying

comprehensions, i.e., the intensional properties defining a sequence, using more

powerful first-order formulae in a manner similar to Z schemata [Spivey 1992] and

SETL [Schwartz et al. 1986].

3.3 Translation of control constructs into the iterator calculus

The iterator calculus provides the basis into which control constructs and operations

are translated. Most of the operations in the iterator calculus, with the notable

exception of lift, reduce, and map, are also primitives in Unicon. Other Unicon

constructs are straightforwardly transformed into compositions of constructors and

methods that embody the kernel for the calculus.

The rules for the transformation 𝒯 that translates program expressions into the

iterator calculus are shown in Figure 4. As can be seen in the figure, the rules

provide an equational definition of the semantics of Unicon control constructs. Since

the behavior of these control constructs can be initially difficult to understand by the

user, even if informally described in detail, a succinct and precise formulation of their

meaning is advantageous.

For example, the "every" construct corresponds to forall or reduce, and iterates

until failure. The sequence construct, where terms are separated by ";", is

equivalently transformed into the concatenation of bound expressions, i.e., a

singleton iterator with limit 1, with the result being an iterator over the last

unbounded term. Operations are simply transformed into map over products of the

operands. Lambda expressions, on the other hand, must move any initializers for

local declarations into the function body before recursively transforming that part of

A Transformational Interpreter for Goal-Directed Evaluation 13

the expression. Blocks with local declarations similarly shift initializers into the

sequence body, and are mapped into closures which thus bind the returned generator

to the local declarations.

The kernel that implements the iterator calculus also provides a number of built-

in methods that optimize several of the most frequently occurring calculus

expressions. These include forall that is equivalent to reduce with a don't care

operator. We also abbreviate forall(x :1) as x.bound(), which represents what Icon calls

a bounded expression, that is, a singleton iterator that runs to failure, here optimized

as an iterator that always fails but also remembers if it was non-empty. We further

optimize the kernel by incorporating direct support for such frequently occurring

patterns as succeed:1, where succeed is not(fail), as well as exists, which is

implemented as always restarting the iterator.

Fig. 4. Translation of control constructs and operations into the iterator calculus.

⟦{E1; …; En;Ez}⟧𝓣 forall(⟦E1⟧𝓣:1 | … | ⟦En⟧𝓣:1) | ⟦Ez⟧𝓣 // Sequence

⟦{ local y1:= E𝑦
1 ;…; local ym:= E𝑦

𝑚 ; E1;...;En }⟧𝓣 // Block

 { -> local y1;…; local ym; ⟦{y1 := E𝑦
1 ;…; ym:= E𝑦

𝑚 ; E1;...;En }⟧𝓣 } ()

⟦{ (x1,…,xp) -> local y1:= E𝑦
1 ;…; local ym:= E𝑦

𝑚 ; E1;...;En }⟧𝓣 // Lambda expression

 ! { (x1,…,xp) -> local y1;…; local ym; ⟦{y1 := E𝑦
1 ;…; ym:= E𝑦

𝑚 ; E1;...;En; fail}⟧𝓣 }

⟦every E⟧𝓣 forall(⟦E⟧𝓣) // Control constructs

⟦every Ex do Ey⟧𝓣 forall(⟦Ex⟧𝓣 & (⟦Ey⟧𝓣 ;fail))

⟦while Ex do Ey⟧𝓣 forall((⟦Ex⟧𝓣:1 -> (⟦Ey⟧𝓣; succeed:1))*) // where succeed = not(fail)

⟦until Ex do Ey⟧𝓣 ⟦while (not Ex) do Ey⟧𝓣

⟦repeat E⟧𝓣 forall((⟦E⟧𝓣; succeed:1)*)

⟦not E⟧𝓣 not(exists(⟦E⟧𝓣))

⟦if Eg then Ex else Ey⟧𝓣 ⟦Eg⟧𝓣 -> ⟦Ex⟧𝓣 | ⟦Ey⟧𝓣

⟦if Eg then Ex⟧𝓣 ⟦Eg⟧𝓣 -> ⟦Ex⟧𝓣

⟦return E⟧𝓣 return(exists(⟦E⟧𝓣))

⟦suspend E⟧𝓣 suspend(⟦E⟧𝓣)

⟦suspend Ex do Ey⟧𝓣 (x in ⟦Ex⟧𝓣) & (suspend(!x)); ⟦Ey⟧𝓣 ;fail)

⟦ fail ⟧𝓣 fail

⟦Ex & Ey⟧𝓣 ⟦Ex⟧𝓣 & ⟦Ey⟧𝓣 // Iterator calculus operators

⟦Ex | Ey⟧𝓣 ⟦Ex⟧𝓣 | ⟦Ey⟧𝓣 // Similarly for other operators

⟦ (x in E) ⟧𝓣 (x in ⟦E⟧𝓣)

⟦Ex op Ey⟧𝓣 map op (⟦Ex⟧𝓣 & ⟦Ey⟧𝓣) // Operations, e.g. +

⟦op E⟧𝓣 map op (⟦Ex⟧𝓣)

⟦!E⟧𝓣 !⟦E⟧𝓣 // Default transforms

⟦p⟧𝓣 p // where p is a normalized primary expression

⟦c⟨t1,…,tn⟩⟧𝓣 c⟨⟦t1⟧𝓣 ,…, ⟦tn⟧𝓣⟩ // Otherwise homomorphism, where c is composed of terms ti

14 P. Mills and C. Jeffery

As mentioned previously, the normalization transform 𝒩 for primary expressions

is independent of the transform 𝒯 for larger expressions, so as to enable staging them

separately. The net transform for taking Unicon expressions into the iterator

calculus is thus the composition:

 𝒯 ∘ 𝒩

Fig. 5. Concretization of iterator calculus terms.

Lift primary to iterator

⟦!f(e1,…,en)⟧𝓚 new IconInvokeIterator({->⟦f⟧𝓚 (⟦e1⟧𝓚 ,…, ⟦en⟧𝓚)}) // Delegates to {->f(t1,…,tn)}()

⟦!c[e] ⟧𝓚 new IconIndexSingleton(⟦c⟧𝓡 , {-> ⟦e⟧𝓚 }) // Index, updatable reference

⟦!o.x1. … .xn ⟧𝓚 new IconFieldSingleton(⟦o⟧𝓡𝓡, "x1", …, "xn") // Field reference, updatable

⟦!o.x1. … .xn ::f ⟧𝓚 new IconFieldSingleton(⟦o.x1. … .xn ::f ⟧𝓡) // Method reference

⟦! C.new(e1,…,en)⟧𝓚 new IconInvokeIterator({-> new C(⟦e1⟧𝓚 ,…, ⟦en⟧𝓚)}) // Synthetic functions

⟦! range(e1, e2, e3)⟧𝓚 new IconToIterator(⟦e1⟧𝓚, ⟦ e2⟧𝓚, ⟦ e3⟧𝓚) // changed to constructs

⟦!𝑙⟧𝓚 new IconValueSingleton(𝑙) // Literal, excluding collection literals

⟦!p⟧𝓚 new IconSingleton(⟦p⟧𝓡) // Default singleton iterator over reified primary

Reified primary, with getter and setter

⟦x⟧𝓡 x_r, if external reference, new IconVar({->x},{rhs->x=rhs}) // Variable reference

⟦t⟧𝓡 t_r, if inside closure, t_r.get() // Temporary

⟦o.x1. … .xn ⟧𝓡 new IconField(⟦o⟧𝓡𝓡, "x1", …, "xn") // Field reference

⟦p⟧𝓡 {-> ⟦p⟧𝓚}, if inside closure, ⟦p⟧𝓚 // Default is closure over term

Read-only reified primary, used in object reference

⟦x⟧𝓡𝓡 x_r, if external reference, if inside closure then x else {-> x} // Variable reference

⟦t⟧ 𝓡𝓡 t_r // Temporary

⟦p⟧𝓡𝓡 ⟦p⟧𝓡 // Default

Inside primary, i.e., is function argument, subscript, or field in object reference

⟦x⟧𝓚 x_r.deref(), if external reference or class field then x // Variable reference

⟦t⟧𝓚 t_r.deref(), where deref()=get().get() // Temporary

⟦o.x1. … .xn ⟧𝓚 ⟦o⟧𝓚 .x1. … .xn // Field reference

⟦o.x1. … .xn::f ⟧𝓚 ⟦o⟧𝓚.x1. … .xn.f // Method reference

⟦ [e1,...,en] ⟧𝓚 [⟦e1⟧𝓚,..., ⟦en⟧𝓚] // List

⟦ [ek
1:ev

1,...,ek
n:ev

n] ⟧𝓚 [⟦ek
1⟧𝓚: ⟦ev

1⟧𝓚,..., ⟦ek
n⟧𝓚: ⟦ev

n⟧𝓚] // Map

⟦n⟧𝓚 nG, where G is Groovy arbitrary precision // Number

⟦ 𝑙 ⟧𝓚 𝑙 // Literal

Calculus operations and control constructs

⟦if I1 then I2⟧𝓚 new IconIf(⟦I1⟧𝓚 , ⟦I2⟧𝓚) // IconIf encapsulates calculus

⟦(t in I)⟧𝓚 new IconIn(⟦t⟧𝓡 , ⟦I⟧𝓚) // Bound iteration

⟦I1 & I2⟧𝓚 new IconProduct(⟦I1⟧𝓚 , ⟦I2⟧𝓚) // Similarly for other operators

⟦fail⟧𝓚 new IconFail()

⟦p⟧𝓚 p // Default transform

where x and y are identifiers, t is a temporary identifier, p is a normalized primary, f, c, and e are simple

normalized primaries, o is a simple identifier or literal or t , 𝑙 is a literal, n is a number, and

 x_r = new IconVar({-> x}, {rhs->x=rhs}), i.e., a property with get() and set(rhs) methods.

An identifier is an external reference if it is not a class field, method local, parameter, or temporary.

A Transformational Interpreter for Goal-Directed Evaluation 15

and the overall transformation that takes Unicon expressions into Groovy is the

composition:

 𝒦 ∘ 𝒯 ∘ 𝒩

where 𝒦 concretizes the calculus into Groovy. Figure 5 shows the transforms in 𝒦

that take normalized terms in the calculus into Groovy. In particular, variable

declarations are exposed as both plain definitions as well as a reified reference to the

variable in the form of a property with a getter and setter. Lifted variables are then

converted to singleton iterators over their reification, and so return updatable

references, while lifted literals are singletons that return immutable values.

Similarly, indexing as well as field reference is captured as a singleton iterator that

freezes its values on iteration and returns an updatable reference. In contrast,

function invocation is captured as a closure and passed to an IconIterator subclass

that at the start of iteration invokes the closure, and either delegates iteration to its

returned generator, or for a native Java method simply promotes its result to a

singleton iterator.

The concretization transform 𝒦 is optimized to avoid redundant nested closure

formation, for example inside method arguments, and to recognize final reified

temporaries that do not need to be inside closures at all. While it might seem easier

to have instead made all variables and fields just be reified data types, by carefully

exposing class fields and methods as plain definitions, as well as leaving data types

and method invocations in native format, we achieve clean integration with Java,

and can freely reference Java classes and fields from Junicon and vice versa.

3.4 Translation of classes and methods

Having transformed control constructs and expressions into the iterator calculus, the

remaining transforms rely on a relatively straightforward mapping that takes

Unicon methods into variadic lambda expressions, and that maps Icon procedures

and global variables onto the Java class model using static fields in a class of the

same name. We denote the transformations for classes and methods, as well as

procedures and globals, by 𝒞. Since normalization is a separately staged

transformation, and since 𝒯 and 𝒦 are bundled into 𝒞, the net transform that takes

programs into Groovy is thus

 𝒞 ∘ 𝒩

The Unicon class model has a few differences from Java that must be

accommodated in translation. Overall Unicon classes are roughly similar to those of

Java, in that they are composed of fields and methods, albeit with relaxed typing and

with the exception that multiple inheritance is allowed. However, each method can

take any number of arguments, i.e., it is variadic. Method arguments may also be

omitted in invocation even if they are interior, e.g., f(x,,y), in which case they are null

or resolve to parameter defaults, as well as superfluously supplied, in which case

they are ignored. Each method thus has arbitrary arity, which precludes method

overloading, and as a consequence each method has a unique name within its class.

Unicon also has a scoping model in which variables that are not declared and are

unresolved at link time are made local to a method or procedure. While the

transforms faithfully preserve other features in Unicon, the linking model in its

deferred scoping of locals is an exception, due to its incompatibility with Java. We

thus deprecate Unicon's treatment of undeclared variables as local, since this cannot

be determined at compile time.

16 P. Mills and C. Jeffery

In contrast to Unicon, Junicon follows the Java package model and its scoping

rules, so that all variables must be imported or declared. Junicon also slightly

extends Unicon syntax to allow a familiar Java-like block notation for classes and

methods that uses braces instead of "end" and that uses semicolons instead of

newlines to terminate statements. While either Unicon-style or Java-style notation is

allowed as input to the interpreter, a preprocessing step aligns programs with the

Java-like syntax before transformation. For simplicity, the examples and

transformation rules that follow use the Java-style block notation that exists after

preprocessing.

A key problem in the translation of Unicon to Groovy is how to cleanly map

Unicon procedures and global variables into the Java class model. In particular,

procedures, which are akin to methods bound to a global variable, are updatable

entities. In addition we need to support Unicon's provision of function-like class

instantiation using C(x) instead of new C(x), a style similar to that later adopted by

Python. A technique that provides a common solution to the above problems is to

uniformly map Unicon procedures, global variables, and class constructors into the

Java package model by making them static fields in a class with the same name.

Fig. 6. Transformation of classes and methods using variadic lambda expressions.

⟦global G⟧𝓒 class G { static def G; // Globals

 } import static G.G;

⟦procedure P(x) { class P { // Procedures

 local z:=e; body static def P = ⟦{(x) -> local z:=e; body}⟧𝓛

}⟧𝓒 } import static P.P;

⟦class C:E (field) { class C extends E { // Classes

 def field; // Constructor fields

 def field_r = new IconVar({->field}, {rhs->field=rhs});

 C() { super(); initially() } // Constructors

 C(field) { super(); this.field=field; initially() }

 static def C = ⟦{(x) -> new C(x)}⟧𝓚

 local i:=e; def i=⟦e⟧ 𝓚∘𝓣.next(); // Class fields

 def i_r = new IconVar({->i}, {rhs->i=rhs});

 method M(x) { local z:=e; body } def M = ⟦{(x) -> local z:=e; body}⟧𝓛 // Method closures

 initially () { local z:=e'; body' } def initially = ⟦{-> local z:=e'; body'}⟧𝓛 // Initializer

}⟧𝓒 } import static C.C;

⟦ {(x,y) -> local z:=e; body}⟧𝓛 ⟦ {(x,y) -> local z; ⟦{z:=e; body; fail}⟧ 𝓣 }⟧𝓚 // Lambdas

⟦ {(x, y=d, o[]) -> local z; body𝓣}⟧𝓚 { Object... args -> // Lambda concretization

 def x; def x_r = new IconVar({->x}, {rhs->x=rhs}); // Parameters

 def y; def y_r = new IconVar({->y}, {rhs->y=rhs});

 def o; def o_r = new IconVar({->o}, {rhs->o=rhs});

 def z; def z_r = new IconVar({->z}, {rhs->z=rhs}); // Locals

 if (args == null) { args = omit.getEmptyArray(); }; // Unpack arguments

 x = (args.length > 1) ? args[1] : null; // Can omit argument

 y = ((args.length > 2) && (args[2] != omit)) ? args[2] : d; // Has default

 o = (args.length > 3) ? // Remainder as list

 Arrays.asList(args).subList(3,args.length) :new ArrayList();

 return ⟦body𝓣⟧𝓚; }

A Transformational Interpreter for Goal-Directed Evaluation 17

These fields can then be bound to variadic lambda expressions to effect methods and

constructors. For example, a global G is simply mapped into

 class G { static def G; }

and made visible in scope using

 import static G.G;

Procedures, such as procedure P(x) {body}, are similarly transformed to:

 class P { static def P = ⟦{(x) -> body}⟧𝓛 }

where 𝓛 transforms a lambda expression into Groovy. Lastly, support for function-

like class instantiation, e.g. C(x) instead of new C(x), is realized using static fields that

wrap the original constructor:

 class C { static def C = ⟦{(x) -> new C(x)}⟧𝓚 }

Figure 6 illustrates the above transformations for globals and procedures, as well

as for methods and classes. The class declaration proper translates fairly directly to

a Groovy class, with the caveat that multiple inheritance is realized using Groovy

mixins. Local variable declarations within classes are preserved as fields using def ;

however, variable initializers, having been transformed to generators, must be

unraveled after transformation using next() so as to yield a value for assignment.

Seamless integration of Junicon with Java is made possible by exposing public class

fields as normal Java values, and separately encoding their reification.

Methods as well as procedures are implemented using variadic lambda

expressions, in a manner that supports argument omission and parameter defaults.

The treatment of methods as fields bound to such lambda expressions, or

parameterized closures in Groovy, also enables their use as references in generator

expressions. Recall that method invocations were normalized to iteration over a

returned generator as follows:

 e(e',e") (f in e) & (x in e') & (y in e") & (o in !f(x,y))

Method definitions must thus return an iterator, and so are transformed to

parameterized closures as follows:

 method M(x) { local z:=e; body } def M = ⟦{(x) -> local z:=e; body}⟧𝓛

and from there into a generator function via 𝓛:

 def M = ⟦ {(x) -> local z; ⟦{z:=e; body; fail}⟧ 𝓣 }⟧ 𝓚

The transform 𝒦 then concretely takes lambda expressions such as those above into

variadic lambda expressions that support argument omission, as shown in the

bottom of Figure 6. As with block declarations, initializers in local declarations of

lambda expressions must be incorporated by 𝓛 into the sequence body before further

transformation, since initializers in general are also generator expressions. Lambda

expressions as well as block declarations must also synthesize local declarations for

temporaries used in bound iterators. Method invocation is further optimized by

caching freed method body iterators and then reusing them, to avoid unnecessary

reallocation of expression trees in the method body.

In interactive mode, the transforms slightly alter their behavior to enable

execution of outermost expressions. As with class field initializers, a simple

expression such as:

18 P. Mills and C. Jeffery

 f(x)

is transformed to:

 ⟦f(x)⟧ 𝓚∘𝓣.next()

which executes the first iteration of the generator. Moreover, to make constructors

for interactively defined classes visible, class definitions have

 import static C.C;

appended to their transformation. Lastly, local declarations that are interactive and

outermost are transformed in the same manner as class fields, with the exception

that they have "def" stripped in order to make them top-level script bindings under

Groovy.

There are several other ancillary but simple transformations needed to complete

the Unicon translation, for example to enforce arbitrary precision arithmetic. As

further described in Section 5, the transformations are implemented in two phases of

XSLT transformation: a normalization stage 𝒩, followed by 𝒞 for the transformation

of classes, methods, and expressions into Groovy.

Figures 7 and 8 show the results of preprocessing, normalization, and

transformation for an example program. The program in Figure 7 generates the

values between 1 and an upper bound, and interfaces with the Java println method

to effect printing. In Figure 7, the original Unicon program is shown on the top left,

and the program after preprocessing and normalization are shown on the bottom left

and right, respectively. The Groovy result after the transformation 𝒞 is then shown

in Figure 8.

Preprocessing, in addition to handling directives for conditional compilation and

source inclusion, also inserts semicolons and braces to align programs with a Java-

style block notation that simplifies the recognition of parseable statements.

Normalization, as shown in the right of Figure 7, then flattens nested generators into

products of bound iterators, and indicates where lifting must occur.

The transformation of classes, as shown in Figure 8, can be seen to take methods

into variadic lambda expressions assigned to a class field with the original method

name. The function body itself is an iterator constructor, so that the function when

Fig. 7. Preprocessing and normalization of a sample program.

class C(lower) # Original program

 method printRange (upto)

 local i

 every (i := C().range(lower,upto)) do

 System.out::println(i)

 end

 method range (from,bound) … end

end

class C(lower) { # After preprocessing

 method printRange (upto) {

 local i;

 every (i := C().range(lower,upto)) do

 System.out::println(i);

 }

 method range (from,bound) { … }

}

class C(lower) { # Normalized program

 method printRange (upto) {

 local x_0;

 local i;

 every (!i := (x_0 in !C()) &

 !x_0.deref().range(lower, upto)) do

 !System.out::println(i);

 !null

 }

 method range (from,bound) { ... }

}

A Transformational Interpreter for Goal-Directed Evaluation 19

invoked will return an iterator; for optimization the iterator body is cached in a stack

upon method return, and then reused. The provision of function-like constructors is

made possible using static fields with the same name as the class, that cut through to

normal constructors, and that are brought into scope using "import static".

Closures, i.e., lambda expressions, and iterators can thus be seen to be the

building blocks of the implementation, used both to realize class methods as well as

the compact kernel that implements suspendable generators and their composition.

4. TRANSLATION TO JAVA

It is possible to translate Junicon into Java bytecode using the Groovy compiler on

the transformed program for use outside the interpreter. However, the motivations

of improved performance as well as the removal of dependencies on external Groovy

libraries argue for examining the feasibility of direct translation of Junicon into Java.

Such a migration to Java also provides insight into the stability of the normalization

and transformation algorithms under retargeting. The retargeting of the transforms

Fig. 8. Transformation of the sample program to Groovy.

class C {

 private def methodCache = new MethodBodyCache(); // Method body cache

 public def lower; // Constructor fields and their reification

 private IconVar lower_r = new IconVar({-> lower}, {rhs -> lower=rhs});

 public C() { ; } // Constructors

 public C(lower) { this.lower = lower; }

 public static def C = { Object... args -> // Static variadic constructor

 if (args == null) { args = IconEnum.getEmptyArray(); };

 return new C((args.length > 0) ? args[0] : null);

 };

 public def printRange = { Object... args -> // Methods

 IconIterator body = methodCache.getFree("printRange"); // Reuse method body

 if (body != null) { return body.reset().unpackArgs(args); };

 def upto; // Parameters, and their reification

 def upto_r = new IconVar({-> upto}, {rhs -> upto=rhs}).local();

 def x_0; // Temporaries

 def x_0_r = new IconVar({-> x_0}, {rhs -> x_0=rhs});

 def i; // Locals, and their reification

 def i_r = new IconVar({-> i}, {rhs -> i=rhs}).local();

 def unpack = { Object... params -> // Unpack parameters

 if (params == null) { params = IconEnum.getEmptyArray();}

 upto = (params.length > 0) ? params[0] : null;

 i = null; // Reset locals

 };

 // Method body
 body = new IconSequence(new IconEvery((new IconAssign().over(new IconSingleton(i_r),

 new IconProduct(new IconIn(x_0_r, new IconInvokeIterator({-> C()})),

 new IconInvokeIterator({-> x_0.deref().range(lower, upto)})))),

 new IconInvokeIterator({-> System.out.println(i)})),

 new IconValueSingleton(null), new IconFail());

 // Return body after unpacking arguments

 body.setCache(methodCache, "printRange");

 body.setUnpackClosure(unpack).unpackArgs(args);

 return body;

 }

 def range = { Object... args -> ... }

}

import static C.C;

20 P. Mills and C. Jeffery

must address key differences of Groovy from Java, including in particular the use of

typed declarations as well as differences in closure and lambda expression notation

and behavior. In particular, under Java, forward references are not allowed inside

lambda expressions, and all references to method local variables must be effectively

final.

The above differences can be addressed with only minor changes to the

concretization transformations and class generation, and notably no changes to

normalization. Translation to Java is enabled by simply aligning the syntax for

closures to that of Java lambda expressions, and by slightly modifying the

concretization transforms to emit types, e.g., Object instead of def. For classes, only a

slight modification to method definition and invocation is required to expose methods

as variadic lambda expressions. However, these modifications must carefully

overcome limitations in forward references as well as subtle differences in the syntax

for invoking lambda expressions.

The problem of forward references is handled by defining methods normally albeit

with variadic parameters, and then also exposing them as method references

assigned to fields with the same name. In Java, method references are lambda

expressions for methods that already have a name, denoted by “o::f”. Under our

scheme, the dual method references are given priority over the corresponding method

names in resolution, accommodating Unicon reference semantics, while the plainly

defined methods allow forward references to be used. The above technique has the

added benefit of promoting seamless integration with Java, in that external Java

code can invoke Junicon methods as just methods rather than as lambda expressions.

Lastly, it is straightforward to ensure that method locals are effectively final by

encapsulating them as a reified variable that holds its own value.

However, a key challenge that must be addressed is the different way that Java

treats invocation using lambda expressions in comparison to Groovy closures. Recall

that in Unicon methods are first class citizens, i.e., they can be passed in expressions,

and so must be exposed as references in some form. In Groovy such a reference takes

the form of a closure, and there is no syntactic difference in invoking a method from a

closure. Invocation of a closure under Groovy transparently uses the same notation

as if it were a method, e.g., "f(x)". However, in Java invocation using lambda

expressions does not use the same syntax as for method invocation, as it might

otherwise if function types had been introduced. Rather, in Java, a lambda

expression resolves to an instance that implements an interface with a single method,

called a functional interface. Invocation using lambda expressions, or variables that

hold lambda expressions, are explicitly differentiated from method invocation in that

they must use a field name, for example "f.apply(args)" instead of "f(args)". The above

difference must thus be incorporated into the concretization transforms for method

invocation. Invocation must explicitly accommodate a lambda expression, and so

after normalization is translated as follows:

f(x) ((VariadicFunction) f).apply(x)

We do make the simple optimization that, if an invocation refers to a method within

the immediate class, then: f(x) f(x). However, it turns out the performance savings

for this are minimal.

Figure 9 summarizes the changes needed to retarget the transformations from

Groovy to Java, while Figure 10 shows the example program from Figure 7 after

translation to Java. In addition to treating methods as lambdas, there are a few other

subtleties, for example changing collection literals such as [1,2,3] as well as numeric

A Transformational Interpreter for Goal-Directed Evaluation 21

literals to method invocations for list formation and arbitrary precision promotion,

respectively. Moreover, any explicitly typed variables must be carefully carried

forward into derived reified variables and method parameters, so as to enable field

reference without reflection when needed, as well as their use in typed Java methods.

The above changes to the transforms, as well as those described below, are

parameterized in the XSLT transforms of the implementation, so that the interpreter

can generate either Groovy or Java code.

Another problem that must be addressed is how to differentiate the invocation of

native Java methods from other Unicon methods, given that the latter invocation is

assumed to use a functional interface. In the general case the function name used in

an invocation may refer either to a Unicon variable or method, or to a Java method in

external code. In the former case the name resolves to a lambda expression, while in

the latter case the name resolves to a plain method. One solution to differentiate the

invocation of lambda expressions from that of plain methods is to make explicit the

use of non-Unicon Java methods. Invocation of plain Java methods uses an explicit

notation that is then translated to a field reference that is assumed to be typed, e.g.,

Fig. 9. Transformation of methods and their invocation to Java.

Method transform changes for Java

⟦ method M(x) { local z:=e; body }⟧𝓒 public Object M = (VariadicFunction) this::M;

 public Object M ⟦(x) { local z:=e; body }⟧𝓜

⟦ (x,y) { local z:=e; body }⟧𝓜 ⟦ (x,y) { local z; ⟦{z:=e; body; fail}⟧ 𝓣 }⟧𝓚

⟦ (x, y=d, o[]) {local z; body𝓣}⟧𝓚 (Object... args) { // Method concretization

 IconVar x_r = new IconVar(); // Parameters

 IconVar y_r = new IconVar(); // Final reified variable

 IconVar o_r = new IconVar(); // holds its own value

 IconVar z_r = new IconVar(); ; // Locals

 if (args == null) { args = omit.getEmptyArray(); }; // Unpack parameters

 x_r.set((args.length > 1) ? args[1] : null); // Can omit argument

 y_r.set (((args.length > 2) && (args[2] != omit)) ? args[2] : d); // Has default

 o_r.set((args.length > 3) ? // Remainder as list

 Arrays.asList(args).subList(3,args.length) :new ArrayList());

 return ⟦body𝓣⟧𝓚; }

⟦ {(x, y=d, o[]) -> local z; body𝓣}⟧𝓚 { Object... args -> // Lambda concretization

 Same as method concretization

 }

Concretization changes for Java

⟦! f(e1,…,en)⟧𝓚 new IconInvokeIterator(() -> ((VariadicFunction) ⟦f⟧𝓚).apply (⟦e1⟧𝓚 ,…, ⟦en⟧𝓚)})

⟦! o.x1. … .xn::f(e1,…,en)⟧𝓚 new IconInvokeIterator(() -> ⟦o⟧𝓚.x1. … .xn.f (⟦e1⟧𝓚 ,…, ⟦en⟧𝓚))

⟦o.x1. … .xn ⟧𝓚 IconField.getFieldValue(⟦o⟧𝓡𝓡, "x1", …, "xn") // Only if o is not typed

⟦o.x1. … .xn::f ⟧𝓚 ⟦o⟧𝓚.x1. … .xn::f // Stays method reference

⟦ [e1,...,en] ⟧𝓚 new IconList(⟦e1⟧𝓚,..., ⟦en⟧𝓚) // List collection literal

⟦ [ek
1:ev

1,...,ek
n:ev

n] ⟧𝓚 new IconMap(⟦ek
1⟧𝓚,⟦ev

1⟧𝓚,..., ⟦ek
n⟧𝓚,⟦ev

n⟧𝓚) // Map collection literal

⟦n⟧𝓚 new IconNumber.IconInteger(n), or IconDecimal(n) // Configurable arbitrary precision

where methods are exposed as method references using the

 interface VariadicFunction <T,R> { R apply (T... args); }

22 P. Mills and C. Jeffery

o::f(x) o.f(x)

The above translation works when targeting either Groovy or Java. Otherwise,

invocation is assumed to use a variadic lambda expression.

The alternative to making Java invocation explicit is to scope up through

superclass and import definitions to resolve whether external references are to Java

or Unicon, since they treat method invocation differently. While such a technique is

feasible, our strategy has been to purposefully avoid such resolution, since it

replicates many details of the Java compiler for handling types and mutual

dependencies. Such added complex resolution techniques must also be maintained to

track the evolving Java type system, and so the risk outweighs the minor benefits.

Lastly, another migration path to Java that was explored was to replace the use of

lambda expressions with inner classes. The above required extremely few changes to

the concrete transformation, since closure and method reference generation was

already encapsulated. The concrete transformations then simply translate:

Fig. 10. Translation of the sample program to Java.

public class C {

 private MethodBodyCache methodCache = new MethodBodyCache(); // Method body cache

 public Object printRange = (VariadicFunction) this::printRange; // Method references

 public Object range = (VariadicFunction) this::range;

 public Object lower; // Constructor fields

 private IconVar lower_r = new IconVar(()-> lower, (rhs)-> lower=rhs);

 public C() { ; } // Constructors

 public C(Object lower) { this.lower = lower; }

 public static VariadicFunction C= (Object... args) -> { // Static variadic constructor

 if (args == null) { args = IconEnum.getEmptyArray(); };

 return new C((args.length > 0) ? args[0] : null);

 };

 public Object printRange (Object... args) { // Methods

 IconIterator body = methodCache.getFree("printRange"); // Reuse method body

 if (body != null) { return body.reset().unpackArgs(args); };

 IconVar upto_r = new IconVar().local(); // Parameters

 IconTmp x_0_r = new IconTmp(); // Temporaries

 IconVar i_r = new IconVar().local(); // Locals

 VariadicFunction unpack = (Object... params) -> { // Unpack parameters

 if (params == null) { params = IconEnum.getEmptyArray(); };

 upto_r.set((params.length > 0) ? params[0] : null);

 i_r.set(null); // Reset locals

 return null;

 };

 // Method body
 body = new IconSequence(new IconEvery((new IconAssign().over(new IconSingleton(i_r),

 new IconProduct(new IconIn(x_0_r, new IconInvokeIterator(()-> ((VariadicFunction) C).apply())),

 new IconInvokeIterator(()-> ((VariadicFunction) IconField.getFieldValue(

 x_0_r, "range")).apply(lower, upto_r.deref()))))),

 new IconInvokeIterator(()-> System.out.println(i_r.deref()))),

 new IconValueSingleton(null), new IconFail());

 // Return body after unpacking arguments
 body.setCache(methodCache, "printRange");

 body.setUnpackClosure(unpack).unpackArgs(args);

 return body;

 }

 public Object range (Object... args) { ... }

}

A Transformational Interpreter for Goal-Directed Evaluation 23

(args)->{body} new VariadicFunction() { public (Object... args) { return body; } }

this::m new VariadicFunction() { public (Object... args) { return m(args); } }

While targeting inner classes does allow the use of versions of Java before Java 8, the

performance impact was minimal, and so the default for the interpreter is to use the

more succinct lambda expressions.

5. USING XSLT FOR PROGRAM TRANSFORMATION

There are a broad array of transformation tools that could be brought to bear to

implement the above rewriting rules [Feather 1987; Visser 2005]. These technologies

range from program transformation systems such as Stratego/XT [Bravenboer et al.

2008] and Spoofax [Kats and Visser 2010], to metaprogramming support in

languages such as Groovy [Dearle 2010]. While the former are more formally based

on concepts from term writing and theorem proving, the latter provides more ad-hoc

support for manipulating the exposed syntax tree within the language itself, for

example in Groovy to provide annotations for aspect-oriented techniques such as

mixin classes. However, our goal is not to provide such dynamic support for syntax

extension, nor in the interests of retargetability do we wish to be too heavily bound to

a dependency such as Groovy. At the same time, the simplicity of the transforms for

Unicon do not demand the power, scope, or formality of full-fledged transformation

tools such as those above.

5.1 XSLT-based transformation

As part of this research we explore the utility of using XSLT as an alternative means

of transformation. XSLT is a language for transforming XML documents expressed

in XML itself [Kay 2008; Clark 1999; Clark and DeRose 1999]. An XSLT transform

consists of a set of templates, or production rules, whose preconditions are XPath

patterns and that substitute the specified content for any matched XML node. The

production rules can be grouped into modes as well as prioritized to effect specific

rewriting strategies. For example, the XSLT templates for taking Unicon into

Groovy, i.e., the transformation rules, are partitioned into modes for each of the

transforms 𝒩, 𝓕 within 𝒩, 𝓛, and 𝒞.

For illustration, two rewrite rules that create local declarations for all temporary

variables in bound iterators within a given block scope are shown in Figure 11. The

XSLT templates in Figure 11, in an extremely succinct fashion, only create local

variable definitions for temporaries that appear within a block but not in any

subordinate block, i.e., if the temporary and block have the same block ancestor count.

We have found XSLT to be remarkably expressive at similarly capturing expression

context, e.g., looking up or down in scope for class or variable declarations that are

referenced in an expression, which makes it quite an effective tool for transformation.

While XSLT was found to be effective in this small-scale scenario – the

transformations for all of Junicon are less than 3800 lines – its verbosity and lack of

formal basis may hinder its scalable application to other domains. On the other hand,

XSLT is standardized and its Version 1.0, which we use, is built into the Java

runtime environment. For our purposes, which is migration between high-level

languages rather than incorporating metaprogramming support, it was found to be

highly advantageous.

24 P. Mills and C. Jeffery

5.2 Structure of the transformational interpreter

The transformation of Unicon programs and their execution on the Groovy substrate

are housed within a generic harness for transformational interpretation. The

transformational interpreter supports multi-stage transformations that are not

necessarily tied to XSLT, multiple pluggable execution substrates, and cross-

correlation of error messages back to the original source. The steps involved in

transformation are broken down into an end-of-statement detector that uses a chain

of preprocessors, followed by a parser into a decorated XML syntax tree, then

filtering, normalization, and translation transforms, and lastly either dispatching the

transformed expression to another transformational interpreter for further

processing, or deconstructing and piping it into a substrate scripting engine for

execution. The interpreter is coded in Java, and uses Spring dependency injection

[Walls 2011] as well as the Java scripting API to enable customization of the above

steps as well as injecting scripting engine substrates. The generic harness can

function either as an interactive line-by-line interpreter, which is no small feat for

Unicon given its Pascal-like syntax and multi-line string literals, or as a tool that

emits transformed code that can then be compiled for example into Java bytecode.

The Junicon interpreter is an instantiation of the above harness, customized with

a Unicon preprocessor in Java, a Javacc LL(k) grammar [Reis 2011] that

conservatively extends Unicon syntax and that emits decorated XML abstract syntax

trees, parameterized XSLT transforms for normalization and translation to either

Groovy or Java, and a Java kernel that implements the iterator calculus. These four

pieces of customization amount to roughly 7000 lines of code. Each component is

carefully engineered to be capable of being run standalone. Together they fully

define the transformation of Unicon into both Groovy and Java.

Interpreter behavior can be rapidly customized through the XSLT templates for

transformation, as well as a Groovy prelude that allows extensions to the interpreter

Fig. 11. XSLT template for synthesizing temporary variable declarations.

<xsl:template match="BLOCK" mode="findTemporaries" priority="2">

 <xsl:copy>

 <xsl:copy-of select="@*"/>

 <xsl:variable name="blockDepth" select="count(ancestor-or-self::BLOCK)"/>

 <xsl:apply-templates select=".//EXPRESSION[@isTemporary and

 ($blockDepth = count(ancestor::BLOCK))]" mode="createLocal"/>

 <xsl:copy-of select="*"/>

 </xsl:copy>

</xsl:template>

<xsl:template match="*" mode="createLocal" priority="2">

 <xsl:param name="variableName" select="@tmpVariableName"/>

 <STATEMENT>

 <KEYWORD>def</KEYWORD>

 <DECLARATION>

 <IDENTIFIER>

 <xsl:value-of select="$variableName "/>

 </IDENTIFIER>

 </DECLARATION>

 <DELIMITER ID=";"/>

 </STATEMENT>

</xsl:template>

A Transformational Interpreter for Goal-Directed Evaluation 25

kernel. Such scripted customization of the interpreter enables rapid prototyping of

translation enhancements within a spiral development methodology. Indeed, the

Junicon kernel was initially prototyped in Groovy, and later refined into Java to

provide improved performance.

6. PERFORMANCE

Reasonable performance, comparable to that of Unicon, is an important goal. While

the concerns of Java integration, compactness, and semantic clarity are paramount,

an implementation with a slowdown on several orders of magnitude would be of no

practical use. Although extreme measures for optimization have not been taken,

obviously wasteful implementation techniques, such as redundant reified

declarations and repeated iterator construction in method bodies, have been avoided.

To evaluate the practical viability of the implementation, measurements of both

compiled Groovy and compiled Java translations were undertaken, and compared to

that natively run under Unicon.

The performance of Junicon relative to that of Unicon was benchmarked using a

suite of six programs. The programs exercise a wide range of Unicon features:

"Matrix Multiply" employs list creation and access and is O(n3), "Quick Sort"

exercises recursive method invocation and is O(n log(n)), "New Instances" exercises

instance creation and field access and is O(n), "Pi Digits", which computes pi to a

given length, exercises arbitrary precision arithmetic and loop iteration, and is O(n2),

"Loop Test" which is O(n2) measures the basic efficiency of loop constructs and the

iterator calculus, and "Suspend Test", which is O(n) and structured to be similar to

that of the "Loop Test", measures the overhead of suspend and resume in method

invocation. Sample sizes for each program were chosen to uniformly effect

exponential execution time, ranging from 2 seconds to one hour, and each sample

point is the average of three runs.

Figures 12 and 13 show the performance of Junicon relative to that of Unicon for

compiled Groovy and compiled Java translations, respectively. The performance

comparisons in Figure 12 are based on code compiled under Groovy 2.3.1 that

exploits Java invoke dynamic support, and run under Java 1.8.0. In contrast, Figure

13 shows the relative performance of Junicon translated to Java using lambda

expressions, and then compiled and run under Java 1.8.0. The benchmarks were run

on an AMD Dual-Core Opteron 2212 with 8GB of memory running Linux Mint 12.

The execution times were measured using the "time" command by adding both the

user and system time, the latter which includes the overhead of Java Just-in-Time

(JIT) compilation running on the second core.

The results show that Junicon yields only marginally worse, and sometimes better,

performance than that of Unicon. In Figures 12 and 13, each data point represents

the ratio of Junicon's execution time to that of Unicon for a given program and

sample size. Values below 1 on the y-axis demonstrate better performance than that

of Unicon, while values above 1 correspond to worse performance. In both figures, in

the initial stages the performance of Junicon rapidly improves over time as Java's

Just-in-Time (JIT) dynamic compiler converts often used methods, both user and

system, to directly executable instructions.

Both Groovy and Java over the long term have roughly similar performance;

however, Groovy’s initial performance is quite a bit slower than that of Java, and as

Groovy has a larger dependency set it takes longer for JIT to have full effect. For

example, in Figure 12 Quick Sort initially has a performance slowdown over 15

relative to that of Unicon; the inset to Figure 12 shows the full graph with the y-axis

26 P. Mills and C. Jeffery

expanded to include Quick Sort’s first data point. Moreover, Groovy's overhead in

dynamic dispatch is evidenced in the degraded performance of "New Instances",

which heavily employs static method invocation to overlay instance construction.

Surprisingly, as shown in "Pi Digits", the use of Java's arbitrary precision arithmetic

performs better than that of Unicon. Lastly, our implementation of suspend is highly

optimized and incurs zero additional cost over a normal iterator, as evidenced when

comparing the performance of "Loop Test" to the "Suspend Test", which are roughly

equivalent programs.

If one views the "Loop Test" as giving a baseline to the overhead of using the

iterator calculus to implement generator expressions, which is roughly a factor of 2

slowdown over Unicon, then the other sample programs are similarly impacted by

that inherent overhead. Thus any speedup beyond the baseline of a factor of 2

slowdown, representing calculus overhead, may be a more accurate measure of

improvement of a given feature’s performance over that of Unicon. Using that

analysis, the performance of "Pi Digits" could be interpreted to indicate a speedup by

a factor of 4 over Unicon for the feature of arbitrary precision arithmetic. Lastly, we

also examined the performance of several other variants such as using inner classes

instead of lambda expressions in Java, as well as exposing methods in Groovy using

function references in a manner similar to that done for Java, with little difference

observed.

Of particular interest is that the performance of Junicon is roughly equivalent, or

even a little faster, than that reported for Jcon relative to Icon. As mentioned, Jcon

used a different implementation technique based on instrumentation of fail-resume

Fig. 12. Performance of Junicon when translated to Groovy.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 10 100 1,000 10,000

New instances

Quick sort

Matrix multiply

Pi digits

Suspend
Loop

0

1

2

3

4

5

6

7

8

1 10 100 1,000 10,000

S
p

e
e

d
u

p
 r

a
ti

o

(J
u

n
ic

o
n

/U
n

ic
o

n
)

Execution time of Unicon in seconds (logarithmic scale)

New instances

Quick sort

Matrix multiply

Pi digits

Suspend

Loop

A Transformational Interpreter for Goal-Directed Evaluation 27

ports to produce JVM byte code, and reported an overall slowdown by a factor of two

relative to Icon [Proebsting and Townsend 2000]. The roughly similar performance

results between the two radically different implementation techniques of Junicon and

Jcon, despite that fact that Junicon does not directly generate bytecode, might imply

that the performance difference between Unicon and the two Java translations is due

to the inherent overhead of translating a dynamic language for generator expressions

into Java. Consequently one might be led to surmise that Junicon's technique for

transformation into an iterator calculus is potentially as efficient as any other

implementation technique.

7. RELATED WORK

The complexity of Unicon's compact notation for goal-directed evaluation has

motivated several novel translation techniques and attempts at formally defining its

meaning. Chief among these efforts in the arena of Java implementations was Jcon

[Proebsting and Townsend 2000], a bytecode generator for Icon that relied on a

Prolog-like Byrd-box model [Byrd 1980] to instrument backtracking using fail and

resume ports [Proebsting 1997]. Other implementation and semantics studies

primarily relied on continuation-based approaches, such as recursive interpretation

using failure continuations [O'Bagy and Griswold 1987], cross-compilation into C

using a continuation-passing-style [O'Bagy et al. 1993], a denotational semantics

based on continuations [Gudeman 1992], and a semantics based on list and

continuation monads [Danvy et al. 2002].

Fig. 13. Performance of Junicon when translated to Java.

0

1

2

3

4

5

1 10 100 1,000 10,000

S
p

e
e

d
u

p
 r

a
ti

o

(J
u

n
ic

o
n

/U
n

ic
o

n
)

Execution time of Unicon in seconds (logarithmic scale)

New instances

Quick sort

Matrix multiply

Pi digits

Suspend

Loop

28 P. Mills and C. Jeffery

Monads in particular are potentially a natural fit for capturing Icon semantics.

List monads in Haskell, with bind as concatenation over map, can effect lazy list

comprehension, while the Maybe monad and the monad fail method captures failure

[Bird 1998; Hudak et al. 1999; Jones 2003]. List and continuation monad semantics

for a small subset of Icon were examined in [Danvy et al. 2002], with compilation by

semantics-driven partial evaluation. The residual programs of the above

continuation-based approach instrument code with suspend and resume advice. Jcon

similarly relied on heavy instrumentation of code and data types, which rendered

problematic its interfacing with other Java programs. Concerns also arise for

efficiency and unnecessary code complexity. Haskell might give for example a 30-

times performance decrease over procedural Java for a given algorithm. It bears

noting that while the aforementioned denotational and monad semantics for Icon

[Gudeman 1992; Danvy et al. 2002] were not incorrect, they were a bit incomplete in

not explicitly addressing method application, which involves another dimension of

iteration if the method name is an expression. While the "to" construct was

addressed as a prototypical generator function, i.e., non-monogenic operator

[Gudeman 1992], the general case of application using method expressions was not,

and has particular implications in implementation, in that method references or

closures, i.e. lambda abstraction, are needed in the translation target. Nor did the

above efforts directly address the object-oriented extensions provided by Unicon and

its impact on propagating generator expressions through fields in object references.

In contrast to these efforts our approach is one of exposing implicit generators in a

more recognizable explicit form that is aligned with native invocation mechanisms

and that maintains consistency with Java iterators. Our equational formulation of

control constructs similarly illuminates their meaning in a simpler manner. Our

approach differs from other ways to implement iterator abstractions using

continuations, threads, or higher-order functions, in that we take a purely iterator-

based view that rewrites nested generators, and so rely on flattening rather than

instrumentation or higher-order functions to do that work. Aligning with the target

substrate is key both to enable the grafting of goal-directed capabilities onto another

language, for example through scoped annotations that delimit iterator propagation,

and to enable an interactive interpreter, a feature that was to date lacking for Unicon.

Another advantage of our approach is that certain problematic features of Icon and

Unicon, such as first-class patterns [Walker 1989] and concurrency [Gharaibeh et al.

2012a; Gharaibeh 2012b] potentially become simpler to implement.

Our extension of Java iterators to support suspendable iteration bears some

similarity to other work on interruptible iterators in JMatch [Liu et al. 2006; Liu and

Myers 2003]. There the focus was on extending coroutine iterators in JMatch to

handle update operations on the underlying data structure. Interruptable iterators

for ML were also examined by Filliatre [2005] using purely functional persistent

cursors that also allow backtracking. In contrast, our iterators integrate suspend and

resume with failure-driven control as well as compositions such as product,

concatenation, reduce, and map, in a tightly knitted logic. It is also feasible to

alternatively use multithreading to create a coroutine-like implementation of

suspend in generator functions, as is provided in several Groovy and Java extension

classes. However, the cost of multithreading is not minor, and as we already

translate programs to iterator expressions, it is simpler to directly augment iterators

with suspension. Lastly, our iterator calculus has many aggregate operations similar

to the Stream interface in Java that, in conjunction with lambda expressions,

supports a functional programming style. However, unlike streams, the calculus

A Transformational Interpreter for Goal-Directed Evaluation 29

operations are suspendable and failure-driven, have no terminal operations that

yield non-iterators, and add CSP-like guarded choice and repetition needed for

composing generators.

There are several more formal program transformation systems that could be

used instead of XSLT [Feather 1987; Visser 2005]. These include such tools as

Stratego/XT [Bravenboer et al. 2008]. While such tools could be brought to bear to

effect translation in this case, the motivation of our approach was to examine the

utility of XSLT as an alternative for small-scale program transformation across

dynamic languages. XSLT has the potential advantage of being a widespread

standard that represents a trade off of simplicity for reduced dependency on more

complicated tools.

While it is well understood that the semantics of Icon generators can be built on

lazy list comprehension, to our knowledge no one has formalized a calculus for

specifying such comprehensions directly. Unlike typical mechanisms for list

comprehension, the iterator calculus allows specifying comprehensions using first-

order formulae similar to those found in Z schemata [Abrial et al. 1980; Spivey 1992;

Davies and Woodcock 1996] and SETL [Dewar et al. 1981; Schwartz et al. 1986].

8. CONCLUSIONS

We have developed a Java-based interpreter for Unicon, called Junicon, implemented

using XSLT-based program transformation. Such transformational interpretation

has several distinct advantages. First, the implementation clarifies the semantics of

Unicon by reducing nested generators to a familiar and explicit form, and yields an

equational definition of its control constructs. Second, the normalization techniques

that make explicit the otherwise implicit generator propagation enable the grafting

of goal-directed evaluation onto other languages such as Java. Third, by translating

Unicon onto another Java-based language, and by carefully preserving native types

and invocation mechanisms, the implementation can cleanly integrate with and

leverage the full range of Java capabilities including its portability and libraries for

concurrency and graphics.

Lastly, the Junicon implementation demonstrates that XSLT is potentially well

suited for expressing several types of program transformations. While not terribly

well founded in formal methods, the efficacy of XSLT as a rewriting system and its

built-in support in Java make it extremely attractive. Moreover, its use yielded an

extremely compact implementation that is readily extensible and retargetable. Rapid

development of translation enhancements is facilitated by the scripted nature of the

XSLT transforms. We examined the ease of retargeting by migrating the transforms

to Java using its nascent support of lambda abstraction, and so realized an

interpreter that can function either interactively or as an offline translator.

Currently the prototype implementation [Mills and Jeffery 2014], while

transforming the full Unicon syntax, maps only a core subset of the vast array of

Unicon operators and built-in functions into a Java implementation. Future efforts

will focus on extending Junicon to implement the full range of Unicon capabilities.

We also plan to investigate the possibility of automatically porting adjunct Unicon

libraries for networking, graphics, and external language integration using facilities

such as JNI and Swig. Lastly, correlating debugging and performance information

within a transformational framework is an area to be further explored.

ACKNOWLEDGMENTS

The authors would like to thank in advance the anonymous reviewers for their helpful suggestions and

comments on drafts of this article.

30 P. Mills and C. Jeffery

REFERENCES

Abrial, J.-R., Schuman, S. A., and Meyer, B. 1980. A specification language. In On the Construction of

Programs, A. M. Macnaghten and R. M. McKeag. Eds., Cambridge University Press, Chapter 11, 343-

410.

Allison, L. 1990. Continuations implement generators and streams. The Computer Journal 33, 5, 460-465.

Backus, J. 1978. Can programming be liberated from the von Neumann style? A functional style and its

algebra of programs. Comm. ACM 21, 8, 613-641.

Bird, R. 1998. Introduction to Functional Programming using Haskell (2nd Edition). Prentice Hall Press.

http://www.cs.ox.ac.uk/publications/books/functional/.

Bravenboer, M., Kalleberg, K. T., Vermaas, R., and Visser, E. 2008. Stratego/XT 0.17. A language and

toolset for program transformation. Sci. Comput. Program. 72, 1, 52-70.

Byrd, L. 1980. Understanding the control of Prolog programs. Technical Report 151. Department of

Artificial Intelligence, University of Edinburgh, Scotland. 12 pages.

Clark, J. (Ed.). 1999. XSL Transformations (XSLT), Version 1.0, W3C Recommendation 16 (November

1999). http://www.w3.org/TR/xslt

Clark, J. and DeRose S. (Eds.). 1999. XML Path Language (XPath), Version 1.0. W3C Recommendation 16

(November 1999). http://www.w3.org/TR/xpath

Davies, J. and Woodcock, J. 1996. Using Z: Specification, Refinement and Proof. Prentice Hall

International Series in Computer Science. http://www.usingz.com/text/online/.

Dearle, F. 2010. Groovy for Domain-Specific Languages. Packt Publishing. http://groovy.codehaus.org/

Danvy, O., Grobauer, B., and Rhiger, M. 2002. A unifying approach to goal-directed evaluation. New

Generation Computing 20, 1, 53-73.

Dewar, R. B. K., Schwartz, J. T., and Schonberg, E. 1981. Higher level programming: Introduction to the

use of the set-theoretic programming language SETL. Technical Report, Computer Science

Department, Courant Institute of Mathematical Sciences, New York University.

Dijkstra, E. W. 1975. Guarded commands, nondeterminacy, and formal derivation of programs. Comm.

ACM 18, 8, 453-457.

Feather, M. S. 1987. A survey and classification of some program transformation approaches and

techniques. In IFIP TC2/WG 2.1 Working Conference on Program Specification and Transformation.

North-Holland Publishing Co. Amsterdam, The Netherlands, 165-195.

Filliatre J.-C. 2006. Backtracking iterators. In Proceedings of the 2006 Workshop on ML (ML'06). ACM

Press, New York, NY, 55-62.

Gharaibeh, J. A. 2012. Programming Language Support for Virtual Environments. Ph.D. Dissertation.

University of Idaho, Moscow, Idaho.

Gharaibeh, J.A., Jeffery, C., and Oikonomou, K.N. 2012. An hybrid model for very high level threads. In

Proceedings of the 2012 PPOPP International Workshop on Programming Models and Applications for

Multicores and Manycores (PMAM 2012). ACM Press, New York, NY, 55-63.

Gosling, J., Joy, B., Steele, G., Bracha, G., and Buckley, A. 2014. The Java Language Specification, Java

SE 8 Edition. Addison-Wesley Professional.

Griswold, R. and Griswold, M. 1996. The Icon Programming Language, Third Edition. Peer-to-Peer

Communications.

Griswold, R.E., Poage, J. F., and Polonsky, I. P. 1971. The SNOBOL 4 Programming Language, 2nd

Edition. Prentice-Hall, Englewood Cliffs, N.J.

Griswold, R. E., Hanson, D. R., and Korb, J. T. 1981. Generators in Icon. ACM Trans. Program. Lang. Syst.

3, 2, 144-161.

Gudeman, D. A. 1992. Denotational semantics of a goal-directed language. ACM Trans. Program. Lang.

Syst. 14, 1, 107-125.

Hoare, C.A.R. 1978. Communicating sequential processes, Comm. ACM 21, 8, 666-677.

Hudak, P., Peterson, J., and Fasel, J. 1999. A gentle introduction to Haskell 98. Technical Report, Yale

University, 64 pages.

Jagger, J., Perry, N., and Sestoft, P. 2007. C# Annotated Standard. Morgan Kaufmann Publishers Inc.,

San Francisco, CA.

Jeffery, C. L. 2001. Goal-directed object-oriented programming in Unicon. In Proceedings of the 2001 ACM

Symposium on Applied Computing (SAC'01). ACM Press, New York, NY, 306-308.

Jeffery, C., Mohamed, S., and Gharaibeh, J. A. 2013. Unicon language reference. Technical Report UTR8a.

University of Idaho, Moscow, Idaho. 47 pages. http://www.unicon.sourceforge.net/utr/utr8a.pdf

Jeffery, C., Mohamed, S., Gharaibeh, J. A., Pereda, R., and Parlett, R. 2013. Programming with Unicon,

2nd Edition. http://www.unicon.sourceforge.net/ub/ub.pdf

Jones, S. P. (Ed.). 2003. Haskell 98 Language and Libraries: The Revised Report. Cambridge University

Press. http://haskell.org/onlinereport/.

Jones, S. P. and Wadler, P. 1993. Imperative functional programming. In Proceedings of the 20th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'93). ACM Press, New

York, NY, 71-84.

A Transformational Interpreter for Goal-Directed Evaluation 31

Kay, M. 2008. XSLT 2.0 and XPath 2.0 Programmer's Reference, 4th Edition. Wrox Press, New York, NY.

Lennart, C. L., Kats, L. C. L., and Visser, E. 2010. The spoofax language workbench: Rules for declarative

specification of languages and IDEs. In Proceedings of the ACM International Conference on Object

Oriented Programming Systems Languages and Applications (OOPSLA'10). ACM Press, New York,

NY, 444-463.

Li, G. 2010. Formal verification of Programs and Their Transformations. Ph.D. Disseration. University of

Utah, Salt Lake City, Utah.

Liang, S., Hudak, P., and Jones, M. P. 1995. Monad transformers and modular interpreters. In Proceedings

of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'95).

ACM Press, New York, NY, 333-343.

Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C. 1977. Abstraction mechanisms in CLU. Comm. ACM

20, 8, 564-576.

Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, J. C., Scheifler, R., and Snyder, A. 1981. CLU

reference manual. Lecture Notes in Computer Science 114, G. Goos and J. Hartmanis, Eds., Springer-

Verlag, Berlin.

Liu, J. and Myers, A. C. 2003. JMatch: Iterable abstract pattern matching for Java. In Proceedings 5th

International Symposium on Practical Aspects of Declarative Languages (PADL'03). Lecture Notes in

Computer Science 2562, Springer-Verlag, 110-127.

Liu, J., Kimball, A., and Myers, A. C. 2006. Interruptible iterators. In Proceedings 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming (POPL'06). ACM Press, New York, NY, 283-294.

Mills, P. and Jeffery, C. 2014. The Junicon project at sourceforge. http://sourceforge.net/projects/junicon/.

O'Bagy, J. and Griswold, R. E. 1987. A recursive interpreter for the Icon programming language. In

Proceedings SIGPLAN '87 Symposium on Interpreters and Interpretive Techniques. ACM Press, New

York, NY, 138-149.

O'Bagy, J., Walker, K., and Griswold, R.E. 1993. An operational semantics for Icon: Implementation of a

procedural goal-directed language. Computer Languages 18, 4, 217-239.

Proebsting, T. A. 1997. Simple translation of goal-directed evaluation. In Proceedings of the ACM

SIGPLAN 1997 Conference on Programming Language Design and Implementation (PLDI'97). ACM

Press, New York, NY, 1-6.

Proebsting, T. A. and Townsend, G. M. 2000. A new implementation of the Icon language. Software:

Practice and Experience 30, 8, 925-972.

Reddy, U. S. 1990. Formal methods in transformational derivation of programs. In Proceedings Formal

methods in software development. ACM Press, New York, NY, 104-114.

Reis, A. J. D. 2011. Compiler Construction Using Java, JavaCC, and Yacc. Wiley-IEEE Computer Society

Press.

Rossum, G. and Drake, F. L. 2011. The Python Language Reference Manual. Network Theory Ltd.,

Godalming, United Kingdom.

Schwartz, J. T., Dewar, R. B., Schonberg, E., and Dubinsky E. 1986. Programming with Sets: An

Introduction to SETL. Springer-Verlag, New York, NY.

Spivey, J. M. 1992. The Z Notation: A Reference Manual, 2nd Edition. Prentice Hall International Series

in Computer Science, Upper Saddle River, NJ. http://spivey.oriel.ox.ac.uk/mike/zrm/.

Visser, E. 2005. A survey of strategies in rule-based program transformation systems. Journal of Symbolic

Computation, Special issue on Reduction Strategies in Rewriting and Programming 40, 1, 831-873.

Wadler, P. 1990. Comprehending monads. In Proceedings of the 1990 ACM Conference on LISP and

Functional Programming. ACM Press, New York, NY, 61-78.

Walker, K. W. 1989. First-class patterns for Icon. Computer Languages 14, 3, 153-163.

Walls, C. 2011. Spring in Action, 3rd Edition. Manning Publications Co., Greenwich, CT.

	A Transformational Interpreter for Goal-Directed Evaluation(
	Peter Mills and Clinton Jeffery
	Unicon Technical Report 17
	June 12, 2014
	Abstract
	We develop a Java-based interpreter for the Unicon programming language using transformation, first into an iterator calculus and from there into the dynamic language Groovy. In Unicon every expression is a generator that produces values until it fai...
	Unicon Project
	http://unicon.org
	Department of Computer Science
	University of Idaho
	Moscow, ID, 83844, USA
	A Transformational Interpreter for Goal-Directed Evaluation(
	INTRODUCTION
	Background
	Transformation of Unicon into Groovy
	Normalization of primary expressions
	The iterator calculus
	Translation of control constructs into the iterator calculus
	Translation of classes and methods

	Translation to Java
	Using XSLT for Program Transformation
	XSLT-based transformation
	Structure of the transformational interpreter

	Performance
	/Related Work
	Conclusions

