
Embedding Concurrent Generators

Peter Mills
Department of Computer Science

University of Idaho
phmills@acm.org

Clinton Jeffery
Department of Computer Science

University of Idaho
jeffery@uidaho.edu

Abstract—Generators are a natural fit for expressing
concurrency. In dynamic languages such as Icon and Unicon
where every expression is a generator that produces a sequence
of values until it fails, there is a pervasive opportunity for
exploiting concurrency. In this paper we present a simple
model of explicit concurrency for generators based on co-
expressions and multithreaded generator proxies, called pipes.
Co-expressions are coroutines that shadow the environment to
prevent interference, while pipes are generator proxies that
communicate with the original expression running in a
separate thread using blocking queues. Together these two
mechanisms are sufficient to express both interleaving as well
as true concurrency in the form of parallel pipelining, and to
build higher-order abstractions such as map-reduce. We then
present techniques for embedding concurrent generators into
Java using transformation. We introduce a form of
annotations for mixed-language embedding, called scoped
annotations, that allow mixing in functionality at the level of
expressions, methods, or classes. Transformations over the
annotated regions then unravel the syntax of generator
expressions to a conventional form by flattening nested
generators in order to enable native evaluation and seamless
interoperability. Mixed-language embedding allows using the
succinct notation of concurrent generators within a familiar
object-oriented setting, and enables their use for high-level
coordination as well as the prototyping and refinement of
parallel programs for multi-core architectures.

Keywords—generators; Icon; Unicon; mixed-language; multi-
paradigm; program transformation.

I. INTRODUCTION

Goal-directed evaluation is a computational paradigm
that combines the power of generators with backtracking
search. In goal-directed evaluation every expression is a
generator that produces a sequence of values or fails, and
operations search to find successful results over the product
space of their operands. Introduced in the influential
dynamic language Icon [1] and later refined in its object-
oriented descendent Unicon [2], goal-directed evaluation and
its pervasive use of generators are potentially a natural fit for
expressing concurrency. However, while such a paradigm
can succinctly express search, several challenges remain in
its effective application in parallel computation.

The first challenge lies in developing concurrency
abstractions that mesh with pervasive generators and are
cleanly amenable to implementation. To answer this
challenge, in this paper we present a minimalist set of
concurrency mechanisms for Unicon that accommodates
both Icon's coroutines, called co-expressions, as well as

multithreaded communication between them using pipes.
Co-expressions are coroutines that shadow the environment
to prevent interference, while pipes are generator proxies that
communicate with a co-expression running in a separate
thread using the put and take operations of blocking queues.
Together these mechanisms are sufficient to express parallel
pipelining, and to build higher-order abstractions such as
map-reduce.

While it may seem a bit of an oxymoron to introduce
concurrency into a dynamic language characterized by
relaxed typing and dynamic dispatch, the benefits lie in
improving performance, in enabling the prototyping and
exploration of parallel algorithms as well as their iterative
refinement, and in the use of concurrent generators for high-
level coordination among larger-grained processes expressed
in other languages. In particular, the latter benefits strongly
argue for the capability to embed goal-directed evaluation
into other more efficient object-oriented languages that
support parallelism. Such a capability would expand the
reach of generators within a familiar setting and allow their
use for coordination as well as refinement. In contrast to
other dynamic languages that support parallelism [3,4,5,6],
our goal is to support mixed-language programming across
fundamentally differing computational paradigms rather than
just to support multiple paradigms of concurrency within a
single language. However, a capability for grafting goal-
directed evaluation onto existing languages in a manner that
provides seamless interoperability is a difficult challenge.

To answer the second challenge we present a novel
approach to embedding goal-directed evaluation and its
concurrency mechanisms into existing object-oriented
languages based on program transformation. We introduce a
form of annotations for mixed-language embedding, called
scoped annotations, that allow mixing in Unicon
functionality at the level of expressions, methods, or classes.
Transformations over the annotated regions then unravel the
syntax of generator expressions to a conventional form by
flattening nested generators and making iteration explicit in
order to enable native evaluation. The transformations are
benign in that they are largely oblivious to the grammar of
the surrounding language and leave code foreign to Unicon
unchanged, while the mechanisms used to unravel the syntax
to a conventional form provide seamless interoperability
with other object-oriented languages.

In previous work [7] we demonstrated the utility of the
approach for a sequential core of Unicon by implementing
the transformations for Java as well as its dynamic analogue
Groovy, and housed them in an interpretive harness called
Junicon that realizes both an interactive extension of Groovy

Copyright © 2016 IEEE.
Proc. 21st International Workshop on High-Level Parallel Programming Models and Supportive Environments,

30th IEEE International Parallel & Distributed Processing Symposium (IPDPS HIPS '16), 366-375.
DOI doi.ieeecomputersociety.org/10.1109/IPDPSW.2016.8

as well as a translator of embedded goal-directed evaluation
into Java. In this paper we extend the transformational
approach to yield an implementation of co-expressions, as
well as a new technique for coordination based on the notion
of multithreaded generator proxies that are layered over co-
expressions using blocking channels. Our work presents a
model of concurrent generators that simplifies and unifies the
thread-based model previously developed for Unicon in [8],
and enables its embedding into other object-oriented
languages.

The contributions of this paper are as follows. First, we
present a simple model of explicit concurrency for generators
based on co-expressions and multithreaded generator
proxies. We demonstrate the utility of the model in
expressing parallel pipelining, as well as building higher-
order abstractions such as map-reduce, in a mixed-language
setting that uses scoped annotations to specify the
embedding of concurrent generators. Second, we present
techniques for transforming concurrent generators into Java,
as well as its dynamic analogue Groovy, that leverage Java’s
facilities for multi-threaded concurrency. The techniques rely
on flattening nested generators for primary expressions so as
to enable grafting goal-directed evaluation onto other
languages, as well as on synthesizing co-expressions and
multithreaded generator proxies. Mixed-language embedding
allows using the succinct notation of concurrent generators
within a familiar object-oriented setting, and enables their
use both for the high-level coordination of processes in other
languages, as well as the prototyping and refinement of
parallel programs for multi-core architectures. In particular,
the capability for interactive evaluation under Groovy further
enables exploration and rapid prototyping.

The remainder of this paper is organized as follows.
Section 2 first provides more detailed background on Icon
and Unicon. In Section 3 we present a model of concurrency
for generators. In Section 4 we describe scoped annotations
and illustrate their application to expressing parallel
pipelining and map-reduce within a mixed-language setting.
In Section 5 we describe the transformations that flatten
generator expressions and translate concurrent generators
into Java. Section 6 provides details on the implementation,
while Section 7 provides the results of benchmarking
concurrent generators when translated to Java. Lastly,
Section 8 reviews related work, and we present our
conclusions in Section 9.

II. BACKGROUND

At the heart of Icon and Unicon is the notion of a
generator, which is an expression whose evaluation lazily
yields a sequence of values, i.e., generates them one at a time
on demand. The notion of generator functions has its origin
in the language CLU [9], where a function can yield a result
and suspend until the next value is needed. In Icon and
Unicon this concept is extended into a dynamically typed
notation that combines the pervasive use of generators with
backtracking search.

A. Goal-Directed Evaluation

In Icon every expression is a generator that produces a
sequence of values or fails, and nested generators are
implicitly composed by mapping functions or operations
over the cross-product of their arguments, and then filtering
to find successful results. For example, consider the simple
expression that finds multiples of prime numbers in a given
range:

 (1 to 2) * isprime (4 to 7)

where isprime (x) is defined to produce x if it is prime, and
otherwise fail, and the to construct produces a range of
numbers.

The above expression will, for each value in the sequence
(1,2), iterate through each value in the second sequence
(4,5,6,7) and for the latter that are prime numbers, yield their
product. The compound expression itself forms a generator
that, at each iteration, searches to find the next successful
result, and so produces the sequence 1*5, followed by 1*7,
then 2*5, then 2*7. Such search has particular application in
string processing, the forte of Icon and Unicon.

The implicit composition of nested generators in Icon
may be more clearly understood by decomposing it in terms
of Icon's product operator,

 e & e'

which for each i in e, iterates over each j in e', and yields j as
the next successful result of iteration. In other words,

 e & e' ≡ filter(succeed (for i in e { for j in e' { j } }))

Function application, f(e,e'), is then equivalent to
 f(e,e') → (i in e) & (j in e') & (k in f(i,j))

where (i in e) denotes bound iteration that assigns each value
in the iterator sequence for e to a variable i, and where f is a
generator function that produces a sequence of values on
invocation. Applying the above transformation to operators,
(i=e) can further be seen to be equivalent to (i in e).

The above example of prime multiplication can thus be
recast as an iterator product:

 i=(1 to 2) & j=(4 to 7) & isprime(j) & i*j

which corresponds to the Python generator expression:
 (i*j for i in range(1,2) for j in range(4,7) if isprime(j))

and represents nested iteration. Conversely, a Python
generator expression

 f(x) for x in S if P(x)

is equivalent to
 (x=S) & P(x) & f(x)

Generator expressions are also closely related to Java
streams as well as monad comprehension [7]. In the
terminology of Java streams,

 f(e) → e.flatMap(x->f(x)).filter(succeed)

The above examples highlight how goal-directed
evaluation combines generators with the concept of success
and failure. An expression, at each iteration, succeeds and
produces a value, or fails and terminates the iterator, which
in turn fails. In other words, generators, when viewed as
Java iterators, are terminated by failure of the next () method.
Moreover, at each iteration, an operation will generally be
performed only if the operands all succeed, and otherwise it

fails. Thus, expression evaluation is conditioned on the
success of its terms. For example, f(x,y) will fail if either of
the arguments x or y fails, and so the call to f will not occur.
Similarly, in the iterator product x & y, if at a given iteration
point the precondition x fails, then y is not evaluated. The &
operator is thus fundamental as it embodies notions both of
cross-product as well as conditional evaluation.

It is important to note that, since every expression is a
generator, their composition, and the program in toto, just
yields one large iterator. Even the familiar sequence
construct, a;b;c, denotes the concatenation of iterators that
runs through a and b as singleton iterators that are limited to
producing at most one result, called bounded expressions,
and then delegates remaining iteration to the last term c.
Actual iteration, i.e., executing the iterator's next (), only
occurs at the outermost level of interaction, for example in
class field initializers, and in the main method of a program.

Icon and Unicon further provide a first-class reference
semantics in which expressions can yield variable names to
be assigned. Similarly function names used in invocation can
themselves be generator expressions. For example,

 (f | g)(x)

where | means concatenation of generators, is equivalent to:
 f(x) | g(x)

and so iterates first through f(x) and then g(x). The above
implies that method references, or some form of lambda
abstraction, may be required for implementation.

Goal-directed evaluation thus embodies a conventional
syntax with a very unconventional meaning. The provision
of implicit search as well as the reference semantics, while
powerful, pose challenges in embedding within other
languages.

B. Co-expressions and Threads

Icon and Unicon also provide support for interleaving as
well as true concurrency in the form of coroutines and
multithreaded interaction, respectively. A coroutine is an
expression that can suspend and transfer control to another
expression, and when called again will resume at the point of
suspension with its environment intact. Icon incorporates a
notion of coroutines, called co-expressions, that further
preclude interference by copying local variable references
upon creation, and that are explicitly stepped on each
iteration using an @ operator. Previous work on concurrency
in Unicon [8] extends this notion with co-expressions that
can run in a separate thread, and communicate with each
other through a variety of synchronization mechanisms
including explicitly created blocking channels and mutexes.
While sufficient to express a wide variety of parallel
interaction, communication must be made explicit, and to
date there is no mechanism to naturally chain together
generators at a high level.

III. MODEL OF CONCURRENCY

Generators are a natural fit for expressing concurrency.
In dynamic languages such as Icon and Unicon where every
expression is a generator, there is a pervasive opportunity for

exploiting concurrency. While their composition under goal-
directed evaluation offers the potential for chaining
generators together in parallel, no model has been proposed
which leverages this potential. In this section we present a
simple model of explicit concurrency for generators that
naturally transforms the composition of generators into
parallel pipelines tied together using blocking queues. The
spartan set of concurrency operators are sufficient to express
true concurrency in the form of parallel pipelining, as well as
to build higher-order abstractions such as map-reduce.

Figure 1 presents the minimalist set of operators for
concurrent generators. In Figure 1, the model of concurrency
is based on a single unified notion of first-class iterators that
must be explicitly stepped to the next iteration. The simplest
first-class operator lifts a given expression into a singleton
iterator that returns the original generator, in other words,

 <>e → new Iterator() { next() { return e; } }

Explicitly stepping the first-class generator is through the @
operator:

 @e → e.next()

Promoting the first-class entity back to a generator is through
the ! operator:

 !e → new Iterator() { next() { return @e; } }

which simply unravels it, or equivalently
 !e → repeatUntilFailure(suspend @e)

since the composed iterators must be suspendable. Lastly, the
restart operator ^ resets the iterator to its beginning state.

A. Co-expressions.

A co-expression is similar to a first-class iterator, but in
addition creates a copy of its local environment, i.e., it
shadows any referenced method local variables and
parameters. In other words,

 |<> e → ^(<>e)

where the refresh operator ^ for co-expressions is refined as
follows, using Java's notation for lambda expressions and
where (x,y,z) are locals:

 ^e → ((x,y,z)-> <>e) ((()->[x,y,z])())

Co-expressions thus minimize interference by isolating a
copy of the local environment. In addition, as with a normal
coroutine, the @ activation operator will transfer control
between co-expressions so as to interleave the threads of
execution.

<> e First-class generator.

|<> e Co-expression that shadows the local environment.

|> e Generator proxy that runs in a separate thread.

@ c Next, i.e., step co-expression one iteration.

! c Promote co-expression to a generator.

^ c Restart with a new copy of the local environment.

where e is an expression, and c is a co-expression.

Figure 1. Calculus for concurrent generators.

B. Generator Proxies.

Lastly, a pipe is simply a generator proxy for a co-
expression that runs in a separate thread and iterates until
failure, and that uses a blocking channel for the
communication of results. A blocking channel, or blocking
queue, has put and take operations that wait until the queue
of results is not full or not empty, respectively. Each iteration
of the proxy will wait until a result has been placed in the
channel by the co-expression running in the separate thread.
Thus the surrounding expression runs in parallel to the piped
expression. In other words,

 |>e → new Iterator() { next() { new Thread { run() {
 c=|<>e; while (!fail) { out.put(@c); }}}.start() }}

where out is the output blocking queue, and an @ operation
on a pipe is out.take(). The output blocking queue is a plain
Java BlockingQueue, and is exposed as a public field to
permit further manipulation. Bounding the output queue
buffer size can also be used to throttle a threaded co-
expression.

In its simplest form, a singleton piped iterator that
produces one result forms a future or mutable variable,
whose put and take operations wait until the channel is
empty or full respectively. Historically it has been well
established that mutable variables as found in Id Noveau's
M-structures [10], the M-Vars of Parallel Haskell [11] and
Concurrent Haskell [12], and Linda's tuplespace operations
[13], as well as in an earlier form in the single-assignment
synchronization variables of CML [14] that wait on read
until being defined, are a fundamental building block that
can be used to build higher-order concurrency abstractions.
Not surprisingly, the derived blocking queues of Java are
similarly powerful building blocks, and while they do not
preclude the beneficial use of other synchronization
mechanisms, they do provide the basis of a minimalist
framework for coordination.

The above calculus for concurrent generators is thus
sufficient to express a wide variety of parallel computations.
For example the simple expression

 x * ! |> factorial(! |> sqrt(y))

will, for given generated sequences x and y, spawn off their
factorial and square-root computations in parallel, effecting
explicit task parallelism in the form of a pipeline. A pipeline
consists of a chain of tasks where the output of each element
is the input of the next, synchronized using some form of
blocking queues. The above is in contrast to

 x * y

which reflects implicit data parallelism over the two
generator sequences, and is the type of aggregate operation
naturally amenable to map-reduce. The term map-reduce
[15] refers to a constrained parallel functional style whose
aggregate operations consist of stages of map functors
followed by an optional shuffle and then reduction. The
paradigm typifies Java parallel streams, and is typically
implemented by partitioning the stream and then having
multiple worker threads perform data-parallel operations
sequentially on the decomposed chunks of data.

For example, for a given chunk c, mapping a function f
over the chunk would be expressed using generators as:

 ! |> f(!c)

where the ! operator lifts lists as well as co-expressions to
iterators. The above formulation is subtly different from
conventional map-reduce in that it enforces ordering between
the results of the partitioned threads. However, such a
formulation still requires the streams to be effectively
splittable, i.e., have non-interference within a given stream
operation.

The data-parallel decomposition of map-reduce thus
differs from the calculus of concurrent generators: the former
can be viewed as fixed-data that applies all pipeline stages to
data distributed over threads, while the latter can be viewed
as fixed-code that assigns a pipeline stage to each thread and
exchanges data between them, using the terminology of [16].
Figure 2 illustrates the relationship between pipelining and
data-parallel decomposition when specified using concurrent
generators. In Figure 2, the tan oblongs represent separate
threads of execution, which for pipelines encapsulate an
entire stream, while for data-parallelism encapsulate a chunk
of the source stream over which the function is mapped.

In the next section we examine how, in conjunction with
multi-language integration, concurrent generators can be
used to build and explore higher-order concurrency
abstractions such as map-reduce.

IV. MULTI-LANGUAGE INTEGRATION

A primary goal of our research is to enable the use of
concurrent generators, and goal-directed evaluation in
general, within the broader scope of other languages that
support parallel programming. In particular our approach to
support multiple languages and paradigms is to specify
embedding in a manner where the embedded regions are
oblivious to the grammar of the surrounding context. In our
implementation we do not need parsers for Java or Groovy.
Rather we only need a general metaparser that recognizes
complete statements, based on grouping delimiters such as
braces and parentheses, in order to recognize embedded
regions. Within a transformational framework, each

Pipeline f(! |>s)

Data parallel every (c=chunk(s)) |> f(!c)

s

f

fc fcfc fc

Figure 2. Pipeline and data-parallel models.

embedded region is then transformed and injected into the
surrounding context, from the innermost outwards, to yield
the final program. The exact transforms are dependent on
both the embedded and surrounding language types.

To specify embedded regions we introduce a form of
annotations, called scoped annotations, that blend Java
annotations and XML. For example, scoped annotations of
the form:

 @<script lang="junicon"> x = f(g(y)); @</script>

are used to specify the embedded language, and delimit the
sections of code where flattening of generator expressions
occurs. Scoped annotations in general have the following
admissible forms:

 @<tag attr1=x1 ... attrn=xn> expression @</tag>
 @<tag attr1=x1 ... attrn=xn/>
 @<tag(attr1=x1, ... ,attrn=xn)> expression @</tag>
 @<tag(attr1=x1, ... ,attrn=xn)/>

where the tag name may be qualified with either an XML
namespace or Java package name, respectively. Like XML,
such annotations can surround multiple statements, and can
also be nested. Unlike conventional Java annotations that
attach metadata to declarations or type use, scoped
annotations can in addition modify expressions as well as
arbitrarily delimited sections of code.

The above syntax of annotations for multi-language
embedding is carefully chosen so that, similar to XML, it is
attributed and scoped. The syntax is also chosen to be
familiar and closely allied to Java annotations as well as
other notations for scripted embedding such as HTML.
However, the syntax is constrained so that its embedded use
does not conflict with most programming language
notations, nor does it collide with other forms of annotations
such as for Java. In particular it differs from other notations
such as JSP (Java Server Pages) in that, because it is tag-
based, it can support multiple languages, and a single syntax
supports both embedding as well as translator directives.

In a dual manner, a scoped annotation of the form
@<script lang="java"> specifies native Java evaluation.
When used outside a Unicon region, the latter exempts the
section of code from being transformed, and so it is directly
compiled, or if interactive is passed through to a Groovy
script engine. When used within a Unicon region, it lifts the
code into a singleton iterator over its closure, so it can
participate in goal-directed evaluation.

A more detailed example that illustrates embedding
concurrent generators into Java is given in Figure 3, showing
a chain of mixed paradigm invocations. The program in
Figure 3 takes lines of text, and computes a hash of the lines
by splitting each line into words, converting the words into
numbers, taking their square root, and then summing the
result. Near the bottom of Figure 3, the Java method
runPipeline can be seen to iterate over an embedded
generator expression that spins off a pipeline to translate the
words into numbers before computing their square root. The
embedded expression returns a generator, exposed as a Java
Iterator used in the for statement. The Unicon expression in
turn cuts down to Java methods wordToNumber and
hashNumber, as well as to a Unicon method splitWords.

Of particular note is that Unicon methods allow the use
of a suspend statement to create a generator function, a
feature otherwise missing from Java as well as Groovy.
However, a subtlety arises in the invocation of generator
functions. While Unicon methods return an iterator in a
manner similar to embedded generator expressions, and so
can be freely used within Java, they are exposed on the
surface as method references in order to allow the use of
function names in expressions. As functional interfaces they
must be invoked with an explicit method name such as apply,
and so their invocation must be differentiated from native
Java method invocation, achieved by using :: for the latter.

At the bottom of Figure 3 is a map-reduce version of the
runPipeline method, called runMapReduce. Its mapReduce
method in turn is defined in Figure 4, and implements a
simple variant of map-reduce defined in Section 3. In Figure
4, the first method chunk breaks up a source stream into
chunks, each chunk being a list of fixed size. The second
method mapReduce then, for each chunk derived using the
generator function s, spins off a task to map the given
function f over its elements, and then reduces the result with

class WordCount {
 static String[] lines;

 @<script lang="junicon">
 def readLines () { suspend ! lines; }
 def splitWords (line) { suspend ! ((String) line)::split("\\s+"); }
 def hashWords (line) {
 suspend this::hashNumber(this::wordToNumber(
 ! splitWords(line)));
 }
 def sumHash (sofar, hash) { return sofar + hash; }
 @</script>

 public Object wordToNumber (Object word) throws
 NumberFormatException {
 return new BigInteger((String) word, 36);
 }
 public Object hashNumber (Object word) {
 return new Double(Math.sqrt(((Number) word).doubleValue()));
 }
 public void runPipeline () {
 double total = 0;
 for (Object i :
 @<script lang="junicon">
 this::hashNumber(! (|> this::wordToNumber(
 ! splitWords(readLines()))))
 @</script>
) { total = total + ((Double) i).doubleValue(); };
 }
 public void runMapReduce () {
 double total = 0;
 DataParallel dp = new DataParallel(1000);
 for (Object i : dp.mapReduce(hashWords, readLines,
 sumHash, 0) {
 total = total + ((Double) i).doubleValue();
 };
 }
}

Figure 3. Embedding concurrent generators into Java.

the reduction function r and initial value i. Lastly, the
mapReduce method returns a generator over the results of
each chunk.

Figures 3 and 4 illustrate several key features of our
approach. First, goal-directed evaluation can be embedded at
the method or expression level, as well as the class level if
desired. Second, the embedding can be arbitrarily nested
across differing languages. Third, the technique for
embedding, in conjunction with the transformations
described in Section 5, provides seamless interoperability
when intermixing Unicon and Java. Specifically, native
types can be transparently passed to and from Unicon,
including class instances and collections such as lists, with
fields accessed and methods invoked from either side.

The programs in Figures 3 and 4 demonstrate how
embedding concurrent generators, and in general a dynamic
language for goal-directed evaluation, can be used to explore
and prototype the comparative performance of parallel
algorithms. In particular, since the implementation of the
calculus for concurrent generators leverages the Java
facilities for task management and communication, their
seamless integration with Java permits refinement in an
iterative development methodology. As mentioned in the
introduction and observed in evaluation, when using an
embedded dynamic language, and in particular one
supporting goal-directed evaluation, there is a tradeoff of
performance for succinctness. The role of embedded
generators in a parallel setting is thus envisioned to be one of
exploration and prototyping, as well as potentially one of
coordinating more computationally intensive pieces encoded
in languages such as Java. In the next section we briefly
describe the transformations that enable goal-directed
evaluation to be embedded into other languages with
seamless interoperability.

V. TRANSFORMATION

A fundamental challenge in embedding goal-directed
evaluation is that it is based on such a differing evaluation
paradigm that interoperability with other languages can be
severely problematic. In this section we describe a novel
approach to embedding Unicon into Java, and with little
modification into its dynamic analogue Groovy, based on
transformation. The key problem to be solved is how to
unravel the syntax to a conventional form in a manner that
enables native function invocation and maintains seamless
interoperability with the surrounding target language.

Program transformation is a broad term that refers to
changing the form of a program into another one that is
semantically equivalent, or, for example in some cases of
refinement, more specific. While program transformation
encompasses translation, which includes compilation and
interpretation, as well as the formal refinement of
specifications and rephrasing, our focus here is on what is
sometimes called migration, that is, translation into another
language at the same level of abstraction [17]. The
transformations that take Unicon into Java and Groovy are
formalized as term rewriting rules, and so yield an
operational semantics [18].

A. Normalization of Primary Expressions

The first step in the transformation that embeds Unicon
into a conventional object-oriented language such as Java is
the flattening or normalization of generator expressions. A
key goal is to preserve type declarations and their use in
function invocations and field references, so as to enable
native evaluation mechanisms as well as seamless
interoperability. For example, we would want class
definitions, variable declarations and simple method
invocations such as o.f(x,y) to be left largely unchanged in
migrating from Unicon to Java, and avoid reflection
mechanisms or instrumentation that might hinder interfacing
with Java. Following the above line of argument, more
complicated expressions in Unicon that embody nested
generator expressions must be reduced to the above simple
form in a manner that makes iteration explicit.

To make iteration explicit, we introduce an operator for
bound iteration, and decompose nested generators into
products of such bound iterators. Consider the following
example of a primary expression, which involves field
reference and indexing in addition to function application,
and where functions are allowed to be expressions that
resolve to method references:

 e(ex,ey).c[ei]

This can be equivalently reformulated as:
 (f in ⟦e⟧घ) & (x in ⟦ex⟧घ) & (y in ⟦ey⟧घ)

 & (o in ! f(x,y)) & (i in ⟦ei⟧घ) & (j in ! o.c[i])

where ࣨ denotes the recursive application of the above
transformation for flattening generators. In the above
rewriting, for each step in the primary from left to right,
generator expressions have been moved outside into bound
iterators, and the pieces of the primary chained together
using these bindings. The ! operator denotes lifting, which
reifies a term and promotes it to an iterator. Lifting a variable

class DataParallel {
 public DataParallel (int size) { this.chunkSize = size; }
 int chunkSize = 1000;

 @<script lang="junicon">
 def chunk(e) { # Partition e into chunks
 chunk = [];
 while put(chunk,@e) do {
 if (*chunk >= chunkSize) then { suspend chunk; chunk=[]; }};
 if (*chunk > 0) then { return chunk; };
 }
 def mapReduce(f,s,r,i) { # Map f over s and reduce with r
 var c, t, tasks = [];
 every (c = chunk(<>s)) do {
 t = |> { var x=i; every (x=r(x, f(!c))); x };
 ((List) tasks)::add(t);
 };
 suspend ! (! tasks);
 }
 @</script>
}

Figure 4. Building map-reduce using concurrent generators.

x turns it into a property with get and set methods, i.e., ()-> x
and (r)-> x=r, and then wraps it in a singleton iterator, in
order to enable it to be passed as an updatable reference.
Lifting an invocation f(x) takes its closure and delegates
iteration to the generator produced by its invocation. For
plain Java methods, invocation just promotes the result to a
singleton iterator.

The above reformulation, if applied recursively to a more
complicated expression, extracts implicit generators and
makes iteration explicit, reducing the expression to a normal
form that is free of nested generators. The remaining
residual expressions can then be evaluated using mechanisms
native to the translation target.

B. Composing Suspendable Iterators

After normalization, the transformation of expressions
proceeds by mapping constructs and operators onto a stream-
like interface for composing suspendable iterators using
functional forms such as product, concatenation, map, and
reduce. Suspendable iteration refers to iteration in which, in
addition to next, there is a suspend operation. In a tree of
composed iterators, suspend will return a value that is
propagated up as the result of the root iterator's next. The
following iteration of the root will then resume at the point
of suspension. In the absence of composition, suspend is
equivalent to next.

A single Java class, IconIterator, implements the stream-
like interface in a tightly knitted logic that provides iteration
that is suspendable, failure-driven, and optionally reversible.
While the IconIterator class implements the java.util.Iterator
interface, it differs in that hasNext () tests for failure of
next (), which terminates the iterator. After failure, the
iterator is then restarted on the following next (). The kernel
is optimized to statefully resume its point of suspension on a
succeeding next (), incurring zero cost for suspends.
Subtypes of the IconIterator class built using the stream
operations are then used as abbreviations for constructs such
as while.

C. Transformation of Classes

When embedding at the class level, a last stage in
transformation maps class fields and methods into the Java
class model, in a manner that supports interoperability while
still accommodating Unicon's reference semantics. As
mentioned previously, in Unicon, variables and subscripted
collections can be passed as updatable references, and
function names can be used in expressions. At the same time,
Unicon class fields and methods need to be exposed in a
manner that can be passed to and used by native Java
methods, and conversely easily access foreign class fields
and methods from within Unicon.

Our approach to solve the above problem is to expose
variables in both plain and reified form while maintaining
consistency between them. This duality allows Java code to
use the plain form, while embedded Unicon code can use the
reified form. For example, consider the following field
declaration in Junicon:

 local x;

This is equivalently transformed to:

 Object x;
 IconVar x_r = new IconVar(()->x, (rhs)->x=rhs);

Methods are similarly defined in plain form, and then
exposed as method references with the same name. Since
methods in Unicon are variadic, i.e., they can take any
number of arguments, they are effectively translated into
variadic lambda expressions that return an iterator. For
example, consider the following method definition in
Junicon:

 method M(x,y) { body }

This is equivalently transformed to:
 Object M = (VariadicFunction) this::M;
 Object M (Object... args) { ⟦ body ⟧ञ }

where ࣮ denotes the translation of the method body. Further
details of the transformations for expressions and classes are
provided in [7].

D. Synthesis of Co-expressions and Generator Proxies

To support concurrent generators, the transformations
also synthesize co-expressions as well as multi-threaded
generator proxies. For co-expressions as well as their
multithreaded proxies, the local environment is shadowed as
described in Section 3, which requires textually scoping up
for referenced locals and creating a lambda expression
around the generator that isolates these locals. Code for co-
expression as well as proxy creation is then generated,
invoking the suspendable iterator runtime. In the latter area,
a single core class, IconCoExpression, provides a unified
model for handling first-class generators as well as co-
expressions and multithreaded proxies, and provides support
for activating co-expressions, i.e., switching between
coroutines, as well as thread creation and communication
using blocking queues.

Figure 5 shows the result of applying the above
transformations to a simple method for spawning a data-
parallel computation using concurrent generators. The
method in Junicon before translation is as follows:

 def spawnMap (f, chunk) {
 suspend ! (|> f(!chunk));
 }

In Figure 5, in the method body, transformation has
unraveled generator expressions into the composition of
iterators using forms such as product, embodied in
IconProduct as well as similarly named classes for operations
and function invocation. As can be seen in Figure 5,
spawning a thread for a co-expression is transformed into an
IconCoExpression constructor over a closure for invoking f
that first copies the referenced local environment, chunk. The
IconCoExpression then handles the ancillary mechanics of
creating the thread, activating the closure within it, and
coordinating the communication of results using blocking
queues. Thread creation and allocation leverage Java’s
facilities for thread pool management and support for multi-
core execution.

After translation to Java, the function body itself is an
iterator constructor, so that the function when invoked will
return an iterator. For optimization the iterator body is
cached in a stack upon method return, and then reused. Since

Unicon methods are variadic, the signature of the exposed
method, shown at the top of Figure 5, is a variadic lambda
expression that returns an iterator.

VI. IMPLEMENTATION

We have implemented the transformations for embedding
Unicon into Java as well as its dynamic analogue Groovy,
and housed them within a generic interpretive harness. A key
aspect of providing support for multiple languages lies in the
structure of the harness itself. The harness provides a
cascading set of interpreters that at each stage transforms its

input and either executes it on a script engine, such as for
Groovy, or chooses another interpreter to pass to for further
transformation. In particular the outermost instantiation of
the harness is a meta-interpreter that detects the embedded
language and its context using scoped annotations, and
dispatches statements to the appropriate sub-interpreter for
transformation.

The Junicon interpreter is an instantiation of the above
harness implemented in Java, customized with a
preprocessor, a Javacc LL(k) parser for Unicon that emits
XML, transforms for normalization and translation to either
Java or Groovy, and a Java kernel that implements the
stream-like interface for composing suspendable iterators.
By enabling embedding within either Groovy or Java, the
interpreter can function both interactively and as a tool that
can emit its output for compilation that is free of
dependencies on Groovy.

VII. EVALUATION

To evaluate the utility of the techniques for embedding
concurrent generators, several variants of the program
described in Figure 3 were compiled to Java, and their
performance measured against equivalent Java stream-based
programs. The suite of embedded Unicon programs
consisted of a sequential word-count, a pipeline-parallel
word-count that split the hash function into two tasks, a map-
reduce word-count that spread the hash function and its
summation reduction over chunks of data, and a data-parallel
word-count that only differed in performing summation over
the sequence returned from flattening the chunks, thus
splitting out the reduction and effecting serialization. The
suite of Java programs similarly consisted of a sequential
word-count, a pipelined version built using BlockingQueues
over two threads, a parallel stream-based version that
implemented map-reduce, and a data-parallel version that
was also stream-based but that split out the reduction. Both
suites used arbitrary precision arithmetic, which is implicit in
Unicon but must be made explicit in Java.

The Java Microbenchmarking Harness (JMH) was used
to measure the performance of both suites on a Titan Quad
AMD Opteron 6272 with 64-cores and 32GB of memory
running Linux Fedora 20, with 20 warmup iterations and 20
test iterations. In addition, a second heavyweight set of
variants of the programs in both suites was also
benchmarked, which increased the complexity of the hash
function components and so the weight of the threaded tasks,
in order to explore the relative overhead of coordination
using concurrent generators.

Figure 6 shows the relative performance of embedded
concurrent generators when translated to Java. Execution
time is normalized with respect to that of the Java parallel
stream benchmark for each of the lightweight and
heavyweight sets, respectively. Confidence intervals at 99%,
shown by whiskers at the top of the histogram bars, showed
negligible variance. In Figure 6, the eight histograms on the
left use the lightweight versions of the wordToNumber and
hashNumber functions described in Figure 3 that constitute
the parallel computation nodes. On the right of Figure 6 are
shown eight corresponding histograms that use the far more

Figure 5. Transformation of concurrent generators to Java.

MethodBodyCache methodCache = new MethodBodyCache();
public Object spawnMap = (VariadicFunction) this::spawnMap;
public IIconIterator spawnMap (Object... args) {
 // Reuse method body
 IconIterator body = methodCache.getFree("spawnMap_m");
 if (body != null) { return body.reset().unpackArgs(args); };
 // Reified parameters
 IconVar f_r = new IconVar().local();
 IconVar chunk_r = new IconVar().local();
 // Temporaries
 IconTmp x_1_r = new IconTmp();
 IconTmp x_0_r = new IconTmp();
 // Unpack parameters
 VariadicFunction unpack = (Object... params) -> {
 if (params == null) { params = IIconAtom.getEmptyArray(); };
 f_r.set((params.length > 0) ? params[0] : null);
 chunk_r.set((params.length > 1) ? params[1] : null);
 return null;
 };
 // Method body
 body = new IconSequence(new IconSuspend(
 new IconProduct(new IconIn(x_1_r, (
 new IconCoExpression((Object... args_2) -> {
 // Reified parameters
 IconVar chunk_s_r = new IconVar().local();
 IconVar f_s_r = new IconVar().local();
 // Unpack parameters
 VariadicFunction unpack_4 = (Object... params) -> {
 if (params == null) { params = IIconAtom.getEmptyArray(); };
 chunk_s_r.set((params.length > 0) ? params[0] : null);
 f_s_r.set((params.length > 1) ? params[1] : null);
 return null;
 };
 // Method body
 IconIterator body_3 = new IconProduct(new IconIn(x_0_r,
 new IconPromote(chunk_s_r)), new IconInvokeIterator(()->
 ((VariadicFunction) f_s_r.deref()).apply(x_0_r.deref())));
 // Return body after unpacking arguments
 body_3.setUnpackClosure(unpack_4).unpackArgs(args_2);
 return body_3;
 }, () -> { return IconList.createArray(chunk_r.deref(),
 f_r.deref()); }).createPipe())), new IconPromote(x_1_r))),
 new IconNullIterator(), new IconFail());
 // Return body after unpacking arguments
 body.setCache(methodCache, "spawnMap_m");
 body.setUnpackClosure(unpack).unpackArgs(args);
 return body;
}

heavyweight and computationally intensive hash functions,
by a factor of roughly 80, achieved using trigonometry and
prime number functions of Java’s Math and BigInteger
libraries.

The results showed that, as would be expected of a
dynamic language, embedded generators yield worse
performance than their native Java counterparts; however,
the penalty is well under an order of magnitude. Moreover,
as can be observed in the right of Figure 6, as the weight of
the computational nodes increases, the relative overhead of
the embedded concurrent generators significantly decreases.
Indeed, even with map-reduce expressed entirely using
concurrent generators, the performance impact on the right
of Figure 6 is negligible. When used to coordinate complex
tasks, concurrent generators may thus potentially provide
performance roughly comparable to that of Java streams.

Another salient point is that the relative improvement
among the embedded programs is roughly consistent with
that of the comparable Java programs. For the purposes of
exploration in a prototyping scenario, ideally it should be the
case that the relative observed performance among
experimental alternatives is preserved under refinement.
While the benchmark results are preliminary and a proof of
concept, they demonstrate the potential feasibility of
exploration using concurrent generators.

VIII. RELATED WORK

There are a variety of dynamic languages that support
parallelism. These include Swift [3], which supports implicit
parallelism in which every data-element is single-assignment
and behaves like a future. Oz [4] is a multi-paradigm
language for distributed programming whose explicit threads
also use single-assignment dataflow variables. Julia [5]
provides explicit task spawning and synchronization based
on futures as well as blocking channels, and also supports
metaprogramming through hygenic macros. Parallel Ruby
[6] is similarly based on explicit task parallelism using
futures as well as pipelines. In contrast to the above efforts,
our approach is one of mixed-language embedding rather
than multi-paradigm integration within a single language,
and focuses on grafting a simple model of concurrent
generators onto other languages through transformations that

enable interoperability. We can thus leverage and integrate
with the broader concurrency mechanisms of the underlying
language, rather than directly incorporating multiple
paradigms of concurrency.

The implicitly aggregate nature of goal-directed
evaluation bears striking similarity to Java streams. Indeed,
many of the stream composition operators such as map,
reduce, and limit are either implicit or present as Icon
primitives. Generators differ, however, in the support for
suspendable iteration, as well as the provision of forms such
as repeat and product that depend on the ability to be
restarted. It bears noting that, while succinct, Java parallel
streams are bound to a specific functional map-reduce style
and implementation, which may hinder algorithmic
exploration and may not be suitable to expressing other
paradigms of concurrency.

The extension of Java iterators to support suspendable
iteration bears some similarity to other work on interruptible
iterators in JMatch [19]. There the focus was on extending
coroutine iterators to handle update operations on the
underlying data structure. Interruptible iterators for ML
were also examined by Filliatre [20] using purely functional
persistent cursors that also allow backtracking. In contrast,
our iterators integrate suspend with failure-driven
composition in a tightly knitted logic. It is also feasible to
alternatively use multithreading to create a coroutine-like
implementation of suspend in generator functions, as is
provided in several Groovy and Java extension classes. Our
techniques for embedding goal-directed evaluation not only
enable the use of suspend in languages otherwise missing
such a capability, but implement it without multithreading.

The challenges of formalizing and implementing goal-
directed evaluation have given rise to a variety of research
efforts. Principal among these efforts for Icon were
continuation-based cross-translators [21, 22, 23, 24], a
monad semantics for a small subset with compilation by
partial evaluation [25], and a Java implementation called
Jcon [26, 27]. The Jcon implementation in particular faced
difficulties in transparently interfacing with other Java
programs due to its instrumentation of data types and
expressions with suspend and resume advice as well as its
reliance on direct bytecode generation. In contrast to these
efforts our transformations rely on flattening to do the work
of instrumentation or higher-order functions used in monads,
and so enable interoperability. Our research also addresses a
wider set of concerns including generator propagation in an
object-oriented setting. Under our approach certain
problematic features of Icon and Unicon such as concurrency
[8] become simpler to implement. Lastly, and perhaps most
importantly, our research focuses on the larger problem of
mixed-language embedding of goal-directed evaluation into
other object-oriented languages.

IX. CONCLUSIONS

In this paper we introduced a simple model of explicit
concurrency for generators, and developed a technique for
embedding such concurrent generators into other languages
based on program transformation. We presented a novel
form of annotations, called scoped annotations, that are used

Figure 6. Performance when translated to Java.

 1

 10

 100

Sequential

Pipeline

DataParallel

M
apReduce

Sequential

Pipeline

DataParallel

M
apReduce

N
o

rm
a

liz
e

d
 e

xe
cu

tio
n

 ti
m

e
 (

lo
g

)

Junicon
JavaLightweight

Heavyweight

in conjunction with the transformations to support mixed-
language integration. The transformations use flattening to
unravel the syntax of pervasive generators to a conventional
form, which is key to enabling interoperability. In the area of
concurrency the transformations synthesize co-expressions
that shadow the local environment, as well as synthesize
multi-threaded generator proxies, and so enable succinctly
expressing parallel pipelining. The transformations are
implemented in an interpretive harness that can target Java as
well as its dynamic analogue Groovy, and so realize a tool
that can function both interactively and as a translator for
compilation. In particular the provision for interactive
evaluation enhances the ability for exploration and
prototyping of parallel programs for multi-core architectures.
We demonstrated the utility of the approach in building
higher-order abstractions such as map-reduce, and evaluated
their performance against equivalent Java stream-based
programs.

Currently the implementation supports the full set of
goal-directed constructs and operators, including those for
concurrency and co-expressions, as well as most of Icon’s
built-in functions. Future efforts will focus on further
evaluating and refining concurrency abstractions for
generators. Lastly, program monitoring and debugging
within a transformational framework is an area to be further
explored.

ACKNOWLEDGMENT

The authors would like to thank Rob Kleffner for help in
implementing many of Icon's built-in functions.

REFERENCES
[1] Griswold, R. E., Hanson, D. R., and Korb, J. T. 1981. Generators

in Icon. ACM Transactions on Programming Language and Systems
3, 2, ACM Press, New York, NY, 144-161.

[2] Jeffery, C. L. 2001. Goal-directed object-oriented programming in
Unicon. In Proc. 2001 ACM Symposium on Applied Computing.
ACM Press, New York, NY, 306-308.

[3] Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., and
Foster, I.T. 2011. Swift: A Language for Distributed Parallel
Scripting. Journal Parallel Computing 37, 9, Elsevier Science
Publishers, 633-652.

[4] Smolka, G. 1995. The Oz Programming Model. In Computer Science
Today. LNCS 1000, J. van Leeuwen (Ed.), Springer-Verlag, 324-343.

[5] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V.B. 2014. Julia:
A Fresh Approach to Numerical Computing. Technical Report
arXiv:1411.1607, Cornell University Library Archive, Computer
Science. http://arxiv.org/pdf/1411.1607v4

[6] Lu, L., Ji, W., and Scott, M.L. 2014. Dynamic Enforcement of
Determinism in a Parallel Scripting Language. In Proc. 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation. ACM Press, New York, NY, USA, 519-529.

[7] Mills, P. and Jeffery, C. 2016. Embedding Goal-Directed Evaluation
through Transformation. To appear in Proc. 31st ACM Symposium on
Applied Computing, ACM Press.

[8] Al-Gharaibeh, J., Jeffery, C., and Oikonomou, K.N. 2012. An hybrid
model for very high level threads. In Proc. 2012 PPOPP
International Workshop on Programming Models and Applications
for Multicores and Manycores. ACM Press, New York, NY, 55-63.

[9] Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C. 1977.
Abstraction mechanisms in CLU. Communications of the ACM, 20,
8, ACM Press, New York, NY, 564-576.

[10] Barth, P. S., Nikhil, R. S. and Arvind. 1991. M-structures: Extending
a parallel, non-strict functional language with state. In Proc. 5th ACM
Conference on Functional Programming Languages and Computer
Architecture, LNCS volume 523, Springer-Verlag, 538-568.

[11] Nikhil, R.S., Arvind, Hicks, J., Aditya, S., Augustsson, L., Maessen,
J., and Zhou, Y. January 1995. pH Language Reference Manual,
Version 1.0. Technical Report Memo-369, MIT Computation
Structures Group, http://csg.csail.mit.edu/pubs/memos/Memo-
369/memo-369.pdf

[12] Peyton-Jones, S., Gordon, A., and F. Sigbjorn, 1996. Concurrent
Haskell. In Proc. 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ACM Press, New York, NY,
295-308.

[13] Carriero, N., and Gelernter, D. 1989. Linda in Context.
Communications of the ACM, 32, 4, ACM Press, New York, NY,
444-458.

[14] Reppy, J.H. 1991. CML: A higher-order concurrent language. In
Proc. Conference on Programming Language Design and
Implementation, ACM Press, New York, NY, 293-305.

[15] Dean, J., and Ghemawat, S. 2008. MapReduce: Simplified Data
Processing on Large Clusters. Communications of the ACM, 51, 1,
ACM Press, New York, NY, 107-113.

[16] Bienia, C., and Li, K., 2010. Characteristics of Workloads Using the
Pipeline Programming Model. In Proc. International Conference on
Computer Architecture, Workshop on Emerging Applications and
Many-core Architecture, Springer-Verlag, 161-171.

[17] Visser, E. 2005. A survey of strategies in rule-based program
transformation systems. Journal of Symbolic Computation, Special
issue on Reduction Strategies in Rewriting and Programming 40, 1,
Elsevier, 831-873.

[18] Serbanuta, T. F., Rosu, G., and Meseguer, J. 2009. A Rewriting
Logic Approach to Operational Semantics. Information and
Computation 207, 2, Elsevier, 305-340.

[19] Liu, J., Kimball, A., and Myers, A. C. 2006. Interruptible iterators. In
Proc. 33rd Symposium on Principles of Programming. ACM Press,
New York, NY, 283-294.

[20] Filliatre J.-C. 2006. Backtracking iterators. In Proc. 2006 Workshop
on ML. ACM Press, New York, NY, 55-62.

[21] O'Bagy, J. and Griswold, R. E. 1987. A recursive interpreter for the
Icon programming language. In Proc. SIGPLAN '87 Symposium on
Interpreters and Interpretive Techniques. ACM Press, New York,
NY, 138-149.

[22] Allison, L. 1990. Continuations implement generators and streams.
The Computer Journal 33, 5, Oxford University Press, 460-465.

[23] Walker, K., and Griswold, R. 1992. An Optimizing Compiler for the
Icon Programming Language. Software Practice and Experience 22,
8, Wiley, 637-657.

[24] O'Bagy, J., Walker, K., and Griswold, R.E. 1993. An operational
semantics for Icon: Implementation of a procedural goal-directed
language. Computer Languages 18, 4, Elsevier, 217-239.

[25] Danvy, O., Grobauer, B., and Rhiger, M. 2002. A unifying approach
to goal-directed evaluation. New Generation Computing 20, 1,
Springer-Verlag, 53-73.

[26] Proebsting, T. A. 1997. Simple translation of goal-directed
evaluation. In Proceedings of the ACM SIGPLAN 1997 Conference
on Programming Language Design and Implementation. ACM Press,
New York, NY, 1-6.

[27] Proebsting, T. A. and Townsend, G. M. 2000. A new
implementation of the Icon language. Software: Practice and
Experience 30, 8, Wiley, 925-972.

