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Abstract—Generators are a natural fit for expressing 
concurrency. In dynamic languages such as Icon and Unicon 
where every expression is a generator that produces a sequence 
of values until it fails, there is a pervasive opportunity for 
exploiting concurrency. In this paper we present a simple 
model of explicit concurrency for generators based on co-
expressions and multithreaded generator proxies, called pipes. 
Co-expressions are coroutines that shadow the environment to 
prevent interference, while pipes are generator proxies that 
communicate with the original expression running in a 
separate thread using blocking queues. Together these two 
mechanisms are sufficient to express both interleaving as well 
as true concurrency in the form of parallel pipelining, and to 
build higher-order abstractions such as map-reduce. We then 
present techniques for embedding concurrent generators into 
Java using transformation. We introduce a form of 
annotations for mixed-language embedding, called scoped 
annotations, that allow mixing in functionality at the level of 
expressions, methods, or classes. Transformations over the 
annotated regions then unravel the syntax of generator 
expressions to a conventional form by flattening nested 
generators in order to enable native evaluation and seamless 
interoperability.  Mixed-language embedding allows using the 
succinct notation of concurrent generators within a familiar 
object-oriented setting, and enables their use for high-level 
coordination as well as the prototyping and refinement of 
parallel programs for multi-core architectures. 

Keywords—generators; Icon; Unicon; mixed-language; multi-
paradigm; program transformation. 

I.  INTRODUCTION 

Goal-directed evaluation is a computational paradigm 
that combines the power of generators with backtracking 
search.  In goal-directed evaluation every expression is a 
generator that produces a sequence of values or fails, and 
operations search to find successful results over the product 
space of their operands.  Introduced in the influential 
dynamic language Icon [1] and later refined in its object-
oriented descendent Unicon [2], goal-directed evaluation and 
its pervasive use of generators are potentially a natural fit for 
expressing concurrency. However, while such a paradigm 
can succinctly express search, several challenges remain in 
its effective application in parallel computation. 

The first challenge lies in developing concurrency 
abstractions that mesh with pervasive generators and are 
cleanly amenable to implementation. To answer this 
challenge, in this paper we present a minimalist set of 
concurrency mechanisms for Unicon that accommodates 
both Icon's coroutines, called co-expressions, as well as 

multithreaded communication between them using pipes. 
Co-expressions are coroutines that shadow the environment 
to prevent interference, while pipes are generator proxies that 
communicate with a co-expression running in a separate 
thread using the put and take operations of blocking queues. 
Together these mechanisms are sufficient to express parallel 
pipelining, and to build higher-order abstractions such as 
map-reduce. 

While it may seem a bit of an oxymoron to introduce 
concurrency into a dynamic language characterized by 
relaxed typing and dynamic dispatch, the benefits lie in 
improving performance, in enabling the prototyping and 
exploration of parallel algorithms as well as their iterative 
refinement, and in the use of concurrent generators for high-
level coordination among larger-grained processes expressed 
in other languages. In particular, the latter benefits strongly 
argue for the capability to embed goal-directed evaluation 
into other more efficient object-oriented languages that 
support parallelism. Such a capability would expand the 
reach of generators within a familiar setting and allow their 
use for coordination as well as refinement. In contrast to 
other dynamic languages that support parallelism [3,4,5,6], 
our goal is to support mixed-language programming across 
fundamentally differing computational paradigms rather than 
just to support multiple paradigms of concurrency within a 
single language. However, a capability for grafting goal-
directed evaluation onto existing languages in a manner that 
provides seamless interoperability is a difficult challenge. 

To answer the second challenge we present a novel 
approach to embedding goal-directed evaluation and its 
concurrency mechanisms into existing object-oriented 
languages based on program transformation. We introduce a 
form of annotations for mixed-language embedding, called 
scoped annotations, that allow mixing in Unicon 
functionality at the level of expressions, methods, or classes.  
Transformations over the annotated regions then unravel the 
syntax of generator expressions to a conventional form by 
flattening nested generators and making iteration explicit in 
order to enable native evaluation. The transformations are 
benign in that they are largely oblivious to the grammar of 
the surrounding language and leave code foreign to Unicon 
unchanged, while the mechanisms used to unravel the syntax 
to a conventional form provide seamless interoperability 
with other object-oriented languages. 

In previous work [7] we demonstrated the utility of the 
approach for a sequential core of Unicon by implementing 
the transformations for Java as well as its dynamic analogue 
Groovy, and housed them in an interpretive harness called 
Junicon that realizes both an interactive extension of Groovy 
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as well as a translator of embedded goal-directed evaluation 
into Java. In this paper we extend the transformational 
approach to yield an implementation of co-expressions, as 
well as a new technique for coordination based on the notion 
of multithreaded generator proxies that are layered over co-
expressions using blocking channels. Our work presents a 
model of concurrent generators that simplifies and unifies the 
thread-based model previously developed for Unicon in [8], 
and enables its embedding into other object-oriented 
languages. 

The contributions of this paper are as follows. First, we 
present a simple model of explicit concurrency for generators 
based on co-expressions and multithreaded generator 
proxies. We demonstrate the utility of the model in 
expressing parallel pipelining, as well as building higher-
order abstractions such as map-reduce, in a mixed-language 
setting that uses scoped annotations to specify the 
embedding of concurrent generators. Second, we present 
techniques for transforming concurrent generators into Java, 
as well as its dynamic analogue Groovy, that leverage Java’s 
facilities for multi-threaded concurrency. The techniques rely 
on flattening nested generators for primary expressions so as 
to enable grafting goal-directed evaluation onto other 
languages, as well as on synthesizing co-expressions and 
multithreaded generator proxies. Mixed-language embedding 
allows using the succinct notation of concurrent generators 
within a familiar object-oriented setting, and enables their 
use both for the high-level coordination of processes in other 
languages, as well as the prototyping and refinement of 
parallel programs for multi-core architectures. In particular, 
the capability for interactive evaluation under Groovy further 
enables exploration and rapid prototyping. 

The remainder of this paper is organized as follows.  
Section 2 first provides more detailed background on Icon 
and Unicon.  In Section 3 we present a model of concurrency 
for generators. In Section 4 we describe scoped annotations 
and illustrate their application to expressing parallel 
pipelining and map-reduce within a mixed-language setting. 
In Section 5 we describe the transformations that flatten 
generator expressions and translate concurrent generators 
into Java. Section 6 provides details on the implementation, 
while Section 7 provides the results of benchmarking 
concurrent generators when translated to Java.  Lastly, 
Section 8 reviews related work, and we present our 
conclusions in Section 9. 

II. BACKGROUND 

At the heart of Icon and Unicon is the notion of a 
generator, which is an expression whose evaluation lazily 
yields a sequence of values, i.e., generates them one at a time 
on demand. The notion of generator functions has its origin 
in the language CLU [9], where a function can yield a result 
and suspend until the next value is needed. In Icon and 
Unicon this concept is extended into a dynamically typed 
notation that combines the pervasive use of generators with 
backtracking search. 

A. Goal-Directed Evaluation 

In Icon every expression is a generator that produces a 
sequence of values or fails, and nested generators are 
implicitly composed by mapping functions or operations 
over the cross-product of their arguments, and then filtering 
to find successful results.  For example, consider the simple 
expression that finds multiples of prime numbers in a given 
range: 

 (1 to 2)  *  isprime (4 to 7) 

where isprime (x) is defined to produce x if it is prime, and 
otherwise fail, and the to construct produces a range of 
numbers. 

The above expression will, for each value in the sequence 
(1,2), iterate through each value in the second sequence 
(4,5,6,7) and for the latter that are prime numbers, yield their 
product.  The compound expression itself forms a generator 
that, at each iteration, searches to find the next successful 
result, and so produces the sequence 1*5, followed by 1*7, 
then 2*5, then 2*7.  Such search has particular application in 
string processing, the forte of Icon and Unicon. 

The implicit composition of nested generators in Icon 
may be more clearly understood by decomposing it in terms 
of Icon's product operator, 

 e & e' 

which for each i in e, iterates over each j in e', and yields j as 
the next successful result of iteration.  In other words, 

 e & e' ≡ filter(succeed (for i in e { for j in e' { j } })) 

Function application, f(e,e'), is then equivalent to 
 f(e,e') → (i in e) & (j in e') & (k in f(i,j)) 

where (i  in e) denotes bound iteration that assigns each value 
in the iterator sequence for e to a variable i, and where f is a 
generator function that produces a sequence of values on 
invocation. Applying the above transformation to operators, 
(i=e) can further be seen to be equivalent to (i  in e). 

The above example of prime multiplication can thus be 
recast as an iterator product: 

 i=(1 to 2)  &  j=(4 to 7)  &  isprime(j)  &  i*j 

which corresponds to the Python generator expression: 
 (i*j for i in range(1,2) for j in range(4,7) if isprime(j)) 

and represents nested iteration.  Conversely, a Python 
generator expression 

 f(x) for x in S if P(x) 

is equivalent to 
 (x=S) & P(x) & f(x) 

Generator expressions are also closely related to Java 
streams as well as monad comprehension [7]. In the 
terminology of Java streams, 

 f(e) → e.flatMap(x->f(x)).filter(succeed) 

The above examples highlight how goal-directed 
evaluation combines generators with the concept of success 
and failure.  An expression, at each iteration, succeeds and 
produces a value, or fails and terminates the iterator, which 
in turn fails.  In other words, generators, when viewed as 
Java iterators, are terminated by failure of the next () method.  
Moreover, at each iteration, an operation will generally be 
performed only if the operands all succeed, and otherwise it 



fails. Thus, expression evaluation is conditioned on the 
success of its terms. For example, f(x,y) will fail if either of 
the arguments x or y fails, and so the call to f  will not occur.  
Similarly, in the iterator product x & y, if at a given iteration 
point the precondition x fails, then y is not evaluated.  The & 
operator is thus fundamental as it embodies notions both of 
cross-product as well as conditional evaluation. 

It is important to note that, since every expression is a 
generator, their composition, and the program in toto, just 
yields one large iterator.  Even the familiar sequence 
construct, a;b;c, denotes the concatenation of iterators that 
runs through a and b as singleton iterators that are limited to 
producing at most one result, called bounded expressions, 
and then delegates remaining iteration to the last term c.  
Actual iteration, i.e., executing the iterator's next (), only 
occurs at the outermost level of interaction, for example in 
class field initializers, and in the main method of a program. 

Icon and Unicon further provide a first-class reference 
semantics in which expressions can yield variable names to 
be assigned. Similarly function names used in invocation can 
themselves be generator expressions. For example, 

 (f | g)(x) 

where | means concatenation of generators, is equivalent to: 
 f(x) | g(x) 

and so iterates first through f(x) and then g(x). The above 
implies that method references, or some form of lambda 
abstraction, may be required for implementation. 

Goal-directed evaluation thus embodies a conventional 
syntax with a very unconventional meaning.  The provision 
of implicit search as well as the reference semantics, while 
powerful, pose challenges in embedding within other 
languages. 

B. Co-expressions and Threads 

Icon and Unicon also provide support for interleaving as 
well as true concurrency in the form of coroutines and 
multithreaded interaction, respectively. A coroutine is an 
expression that can suspend and transfer control to another 
expression, and when called again will resume at the point of 
suspension with its environment intact. Icon incorporates a 
notion of coroutines, called co-expressions, that further 
preclude interference by copying local variable references 
upon creation, and that are explicitly stepped on each 
iteration using an @ operator. Previous work on concurrency 
in Unicon [8] extends this notion with co-expressions that 
can run in a separate thread, and communicate with each 
other through a variety of synchronization mechanisms 
including explicitly created blocking channels and mutexes. 
While sufficient to express a wide variety of parallel 
interaction, communication must be made explicit, and to 
date there is no mechanism to naturally chain together 
generators at a high level. 

III. MODEL OF CONCURRENCY 

Generators are a natural fit for expressing concurrency. 
In dynamic languages such as Icon and Unicon where every 
expression is a generator, there is a pervasive opportunity for 

exploiting concurrency. While their composition under goal-
directed evaluation offers the potential for chaining 
generators together in parallel, no model has been proposed 
which leverages this potential. In this section we present a 
simple model of explicit concurrency for generators that 
naturally transforms the composition of generators into 
parallel pipelines tied together using blocking queues. The 
spartan set of concurrency operators are sufficient to express 
true concurrency in the form of parallel pipelining, as well as 
to build higher-order abstractions such as map-reduce. 

Figure 1 presents the minimalist set of operators for 
concurrent generators. In Figure 1, the model of concurrency 
is based on a single unified notion of first-class iterators that 
must be explicitly stepped to the next iteration. The simplest 
first-class operator lifts a given expression into a singleton 
iterator that returns the original generator, in other words, 

 <>e → new Iterator() { next() { return e; } } 

Explicitly stepping the first-class generator is through the @ 
operator: 

 @e → e.next() 

Promoting the first-class entity back to a generator is through 
the ! operator: 

 !e → new Iterator() { next() { return @e; } } 

which simply unravels it, or equivalently 
 !e → repeatUntilFailure(suspend @e) 

since the composed iterators must be suspendable. Lastly, the 
restart operator  ^  resets the iterator to its beginning state. 

A. Co-expressions. 

A co-expression is similar to a first-class iterator, but in 
addition creates a copy of its local environment, i.e., it 
shadows any referenced method local variables and 
parameters.  In other words, 

 |<> e → ^(<>e) 

where the refresh operator ^ for co-expressions is refined as 
follows, using Java's notation for lambda expressions and 
where (x,y,z) are locals: 

 ^e → ((x,y,z)-> <>e) ((()->[x,y,z])()) 

Co-expressions thus minimize interference by isolating a 
copy of the local environment. In addition, as with a normal 
coroutine, the @ activation operator will transfer control 
between co-expressions so as to interleave the threads of 
execution. 

<> e First-class generator. 

|<> e Co-expression that shadows the local environment. 

|> e Generator proxy that runs in a separate thread. 

@ c Next, i.e., step co-expression one iteration. 

! c Promote co-expression to a generator. 

^ c Restart with a new copy of the local environment. 

where e is an expression, and c is a co-expression. 

Figure 1.   Calculus for concurrent generators. 



B. Generator Proxies. 

Lastly, a pipe is simply a generator proxy for a co-
expression that runs in a separate thread and iterates until 
failure, and that uses a blocking channel for the 
communication of results. A blocking channel, or blocking 
queue, has put and take operations that wait until the queue 
of results is not full or not empty, respectively. Each iteration 
of the proxy will wait until a result has been placed in the 
channel by the co-expression running in the separate thread. 
Thus the surrounding expression runs in parallel to the piped 
expression. In other words, 

    |>e → new Iterator() { next() { new Thread { run() { 
       c=|<>e; while (!fail) { out.put(@c); }}}.start() }} 

where out is the output blocking queue, and an @ operation 
on a pipe is out.take(). The output blocking queue is a plain 
Java BlockingQueue, and is exposed as a public field to 
permit further manipulation. Bounding the output queue 
buffer size can also be used to throttle a threaded co-
expression. 

In its simplest form, a singleton piped iterator that 
produces one result forms a future or mutable variable, 
whose put and take operations wait until the channel is 
empty or full respectively. Historically it has been well 
established that mutable variables as found in Id Noveau's 
M-structures [10], the M-Vars of Parallel Haskell [11] and 
Concurrent Haskell [12], and Linda's tuplespace operations 
[13], as well as in an earlier form in the single-assignment 
synchronization variables of CML [14] that wait on read 
until being defined, are a fundamental building block that 
can be used to build higher-order concurrency abstractions. 
Not surprisingly, the derived blocking queues of Java are 
similarly powerful building blocks, and while they do not 
preclude the beneficial use of other synchronization 
mechanisms, they do provide the basis of a minimalist 
framework for coordination. 

The above calculus for concurrent generators is thus 
sufficient to express a wide variety of parallel computations. 
For example the simple expression 

 x  *  ! |> factorial(! |> sqrt(y)) 

will, for given generated sequences x and y, spawn off their 
factorial and square-root computations in parallel, effecting 
explicit task parallelism in the form of a pipeline. A pipeline 
consists of a chain of tasks where the output of each element 
is the input of the next, synchronized using some form of 
blocking queues. The above is in contrast to 

 x * y 

which reflects implicit data parallelism over the two 
generator sequences, and is the type of aggregate operation 
naturally amenable to map-reduce. The term map-reduce 
[15] refers to a constrained parallel functional style whose 
aggregate operations consist of stages of map functors 
followed by an optional shuffle and then reduction.  The 
paradigm typifies Java parallel streams, and is typically 
implemented by partitioning the stream and then having 
multiple worker threads perform data-parallel operations 
sequentially on the decomposed chunks of data. 

For example, for a given chunk c, mapping a function f 
over the chunk would be expressed using generators as: 

 ! |> f(!c) 

where the ! operator lifts lists as well as co-expressions to 
iterators. The above formulation is subtly different from 
conventional map-reduce in that it enforces ordering between 
the results of the partitioned threads. However, such a 
formulation still requires the streams to be effectively 
splittable, i.e., have non-interference within a given stream 
operation.  

The data-parallel decomposition of map-reduce thus 
differs from the calculus of concurrent generators: the former 
can be viewed as fixed-data that applies all pipeline stages to 
data distributed over threads, while the latter can be viewed 
as fixed-code that assigns a pipeline stage to each thread and 
exchanges data between them, using the terminology of [16].  
Figure 2 illustrates the relationship between pipelining and 
data-parallel decomposition when specified using concurrent 
generators.   In Figure 2, the tan oblongs represent separate 
threads of execution, which for pipelines encapsulate an 
entire stream, while for data-parallelism encapsulate a chunk 
of the source stream over which the function is mapped. 

In the next section we examine how, in conjunction with 
multi-language integration, concurrent generators can be 
used to build and explore higher-order concurrency 
abstractions such as map-reduce. 

IV. MULTI-LANGUAGE INTEGRATION 

A primary goal of our research is to enable the use of 
concurrent generators, and goal-directed evaluation in 
general, within the broader scope of other languages that 
support parallel programming. In particular our approach to 
support multiple languages and paradigms is to specify 
embedding in a manner where the embedded regions are 
oblivious to the grammar of the surrounding context.  In our 
implementation we do not need parsers for Java or Groovy.  
Rather we only need a general metaparser that recognizes 
complete statements, based on grouping delimiters such as 
braces and parentheses, in order to recognize embedded 
regions.  Within a transformational framework, each 

Pipeline f(! |>s)

Data parallel every (c=chunk(s))  |> f(!c)

s

f

fc fcfc fc

Figure 2.   Pipeline and data-parallel models. 



embedded region is then transformed and injected into the 
surrounding context, from the innermost outwards, to yield 
the final program.  The exact transforms are dependent on 
both the embedded and surrounding language types. 

To specify embedded regions we introduce a form of 
annotations, called scoped annotations, that blend Java 
annotations and XML.  For example, scoped annotations of 
the form: 

 @<script lang="junicon"> x = f(g(y)); @</script> 

are used to specify the embedded language, and delimit the 
sections of code where flattening of generator expressions 
occurs. Scoped annotations in general have the following 
admissible forms: 

 @<tag attr1=x1 ... attrn=xn> expression @</tag> 
 @<tag attr1=x1 ... attrn=xn/> 
 @<tag(attr1=x1, ...  ,attrn=xn)> expression @</tag> 
 @<tag(attr1=x1, ...  ,attrn=xn)/> 

where the tag name may be qualified with either an XML 
namespace or Java package name, respectively.  Like XML, 
such annotations can surround multiple statements, and can 
also be nested.  Unlike conventional Java annotations that 
attach metadata to declarations or type use, scoped 
annotations can in addition modify expressions as well as 
arbitrarily delimited sections of code. 

The above syntax of annotations for multi-language 
embedding is carefully chosen so that, similar to XML, it is 
attributed and scoped. The syntax is also chosen to be 
familiar and closely allied to Java annotations as well as 
other notations for scripted embedding such as HTML. 
However, the syntax is constrained so that its embedded use 
does not conflict with most programming language 
notations, nor does it collide with other forms of annotations 
such as for Java. In particular it differs from other notations 
such as JSP (Java Server Pages) in that, because it is tag-
based, it can support multiple languages, and a single syntax 
supports both embedding as well as translator directives. 

In a dual manner, a scoped annotation of the form 
@<script lang="java"> specifies native Java evaluation.  
When used outside a Unicon region, the latter exempts the 
section of code from being transformed, and so it is directly 
compiled, or if interactive is passed through to a Groovy 
script engine.  When used within a Unicon region, it lifts the 
code into a singleton iterator over its closure, so it can 
participate in goal-directed evaluation. 

A more detailed example that illustrates embedding 
concurrent generators into Java is given in Figure 3, showing 
a chain of mixed paradigm invocations. The program in 
Figure 3 takes lines of text, and computes a hash of the lines 
by splitting each line into words, converting the words into 
numbers, taking their square root, and then summing the 
result. Near the bottom of Figure 3, the Java method 
runPipeline can be seen to iterate over an embedded 
generator expression that spins off a pipeline to translate the 
words into numbers before computing their square root. The 
embedded expression returns a generator, exposed as a Java 
Iterator used in the for statement. The Unicon expression in 
turn cuts down to Java methods wordToNumber and 
hashNumber, as well as to a Unicon method splitWords.  

Of particular note is that Unicon methods allow the use 
of a suspend statement to create a generator function, a 
feature otherwise missing from Java as well as Groovy. 
However, a subtlety arises in the invocation of generator 
functions. While Unicon methods return an iterator in a 
manner similar to embedded generator expressions, and so 
can be freely used within Java, they are exposed on the 
surface as method references in order to allow the use of 
function names in expressions. As functional interfaces they 
must be invoked with an explicit method name such as apply, 
and so their invocation must be differentiated from native 
Java method invocation, achieved by using :: for the latter. 

At the bottom of Figure 3 is a map-reduce version of the 
runPipeline method, called runMapReduce. Its mapReduce 
method in turn is defined in Figure 4, and implements a 
simple variant of map-reduce defined in Section 3. In Figure 
4, the first method chunk breaks up a source stream into 
chunks, each chunk being a list of fixed size. The second 
method mapReduce then, for each chunk derived using the 
generator function s, spins off a task to map the given 
function f over its elements, and then reduces the result with 

class WordCount { 
  static String[] lines; 

  @<script lang="junicon"> 
    def readLines () { suspend ! lines; } 
    def splitWords (line) { suspend ! ((String) line)::split("\\s+"); } 
    def hashWords (line) { 
     suspend this::hashNumber(this::wordToNumber( 
   ! splitWords(line))); 
    } 
    def sumHash (sofar, hash) { return sofar + hash; } 
  @</script> 

  public Object wordToNumber (Object word) throws   
          NumberFormatException { 
      return new BigInteger((String) word, 36); 
  } 
  public Object hashNumber (Object word) { 
 return new Double(Math.sqrt(((Number) word).doubleValue()));
  } 
  public void runPipeline () { 
 double total = 0; 
 for (Object i :  
   @<script lang="junicon"> 
        this::hashNumber( ! (|> this::wordToNumber( 
    ! splitWords(readLines())))) 
   @</script> 
 ) { total = total + ((Double) i).doubleValue(); }; 
  } 
  public void runMapReduce () { 
 double total = 0; 
 DataParallel dp = new DataParallel(1000); 
 for (Object i : dp.mapReduce(hashWords, readLines,    
          sumHash, 0) { 
  total = total + ((Double) i).doubleValue();  
 }; 
  } 
} 

Figure 3.   Embedding concurrent generators into Java. 



the reduction function r and initial value i. Lastly, the 
mapReduce method returns a generator over the results of 
each chunk. 

Figures 3 and 4 illustrate several key features of our 
approach.  First, goal-directed evaluation can be embedded at 
the method or expression level, as well as the class level if 
desired.  Second, the embedding can be arbitrarily nested 
across differing languages.  Third, the technique for 
embedding, in conjunction with the transformations 
described in Section 5, provides seamless interoperability 
when intermixing Unicon and Java.  Specifically, native 
types can be transparently passed to and from Unicon, 
including class instances and collections such as lists, with 
fields accessed and methods invoked from either side. 

The programs in Figures 3 and 4 demonstrate how 
embedding concurrent generators, and in general a dynamic 
language for goal-directed evaluation, can be used to explore 
and prototype the comparative performance of parallel 
algorithms.  In particular, since the implementation of the 
calculus for concurrent generators leverages the Java 
facilities for task management and communication, their 
seamless integration with Java permits refinement in an 
iterative development methodology. As mentioned in the 
introduction and observed in evaluation, when using an 
embedded dynamic language, and in particular one 
supporting goal-directed evaluation, there is a tradeoff of 
performance for succinctness. The role of embedded 
generators in a parallel setting is thus envisioned to be one of 
exploration and prototyping, as well as potentially one of 
coordinating more computationally intensive pieces encoded 
in languages such as Java. In the next section we briefly 
describe the transformations that enable goal-directed 
evaluation to be embedded into other languages with 
seamless interoperability. 

V. TRANSFORMATION 

A fundamental challenge in embedding goal-directed 
evaluation is that it is based on such a differing evaluation 
paradigm that interoperability with other languages can be 
severely problematic. In this section we describe a novel 
approach to embedding Unicon into Java, and with little 
modification into its dynamic analogue Groovy, based on 
transformation. The key problem to be solved is how to 
unravel the syntax to a conventional form in a manner that 
enables native function invocation and maintains seamless 
interoperability with the surrounding target language. 

Program transformation is a broad term that refers to 
changing the form of a program into another one that is 
semantically equivalent, or, for example in some cases of 
refinement, more specific.  While program transformation 
encompasses translation, which includes compilation and 
interpretation, as well as the formal refinement of 
specifications and rephrasing, our focus here is on what is 
sometimes called migration, that is, translation into another 
language at the same level of abstraction [17]. The 
transformations that take Unicon into Java and Groovy are 
formalized as term rewriting rules, and so yield an 
operational semantics [18]. 

A. Normalization of Primary Expressions 

The first step in the transformation that embeds Unicon 
into a conventional object-oriented language such as Java is 
the flattening or normalization of generator expressions. A 
key goal is to preserve type declarations and their use in 
function invocations and field references, so as to enable 
native evaluation mechanisms as well as seamless 
interoperability. For example, we would want class 
definitions, variable declarations and simple method 
invocations such as o.f(x,y) to be left largely unchanged in 
migrating from Unicon to Java, and avoid reflection 
mechanisms or instrumentation that might hinder interfacing 
with Java. Following the above line of argument, more 
complicated expressions in Unicon that embody nested 
generator expressions must be reduced to the above simple 
form in a manner that makes iteration explicit. 

To make iteration explicit, we introduce an operator for 
bound iteration, and decompose nested generators into 
products of such bound iterators. Consider the following 
example of a primary expression, which involves field 
reference and indexing in addition to function application, 
and where functions are allowed to be expressions that 
resolve to method references: 

  e(ex,ey).c[ei] 

This can be equivalently reformulated as: 
  (f in ⟦e⟧घ) & (x in ⟦ex⟧घ) & (y in ⟦ey⟧घ)  

   & (o in ! f(x,y)) & (i in ⟦ei⟧घ) & (j in ! o.c[i]) 

where ࣨ denotes the recursive application of the above 
transformation for flattening generators. In the above 
rewriting, for each step in the primary from left to right, 
generator expressions have been moved outside into bound 
iterators, and the pieces of the primary chained together 
using these bindings. The ! operator denotes lifting, which 
reifies a term and promotes it to an iterator. Lifting a variable 

class DataParallel { 
  public DataParallel (int size) { this.chunkSize = size; } 
  int chunkSize = 1000; 

  @<script lang="junicon"> 
  def chunk(e) { # Partition e into chunks 
    chunk = []; 
    while put(chunk,@e) do { 
 if (*chunk >= chunkSize) then { suspend chunk; chunk=[]; }}; 
    if (*chunk > 0) then { return chunk; }; 
  } 
  def mapReduce(f,s,r,i) { # Map f over s and reduce with r 
 var c, t, tasks = []; 
 every (c = chunk(<>s)) do { 
  t = |> { var x=i; every (x=r(x, f(!c) )); x }; 
  ((List) tasks)::add(t);  
 }; 
 suspend ! (! tasks); 
  } 
  @</script> 
} 

Figure 4.   Building map-reduce using concurrent generators. 



x turns it into a property with get and set methods, i.e., ()-> x 
and (r)-> x=r, and then wraps it in a singleton iterator, in 
order to enable it to be passed as an updatable reference. 
Lifting an invocation f(x) takes its closure and delegates 
iteration to the generator produced by its invocation. For 
plain Java methods, invocation just promotes the result to a 
singleton iterator.  

The above reformulation, if applied recursively to a more 
complicated expression, extracts implicit generators and 
makes iteration explicit, reducing the expression to a normal 
form that is free of nested generators.  The remaining 
residual expressions can then be evaluated using mechanisms 
native to the translation target. 

B. Composing Suspendable Iterators 

After normalization, the transformation of expressions 
proceeds by mapping constructs and operators onto a stream-
like interface for composing suspendable iterators using 
functional forms such as product, concatenation, map, and 
reduce. Suspendable iteration refers to iteration in which, in 
addition to next, there is a suspend operation. In a tree of 
composed iterators, suspend will return a value that is 
propagated up as the result of the root iterator's next. The 
following iteration of the root will then resume at the point 
of suspension. In the absence of composition, suspend is 
equivalent to next. 

A single Java class, IconIterator, implements the stream-
like interface in a tightly knitted logic that provides iteration 
that is suspendable, failure-driven, and optionally reversible. 
While the IconIterator class implements the java.util.Iterator 
interface, it differs in that hasNext () tests for failure of 
next (), which terminates the iterator. After failure, the 
iterator is then restarted on the following next ().  The kernel 
is optimized to statefully resume its point of suspension on a 
succeeding next (), incurring zero cost for suspends. 
Subtypes of the IconIterator class built using the stream 
operations are then used as abbreviations for constructs such 
as while. 

C. Transformation of Classes 

When embedding at the class level, a last stage in 
transformation maps class fields and methods into the Java 
class model, in a manner that supports interoperability while 
still accommodating Unicon's reference semantics. As 
mentioned previously, in Unicon, variables and subscripted 
collections can be passed as updatable references, and 
function names can be used in expressions. At the same time, 
Unicon class fields and methods need to be exposed in a 
manner that can be passed to and used by native Java 
methods, and conversely easily access foreign class fields 
and methods from within Unicon. 

Our approach to solve the above problem is to expose 
variables in both plain and reified form while maintaining 
consistency between them. This duality allows Java code to 
use the plain form, while embedded Unicon code can use the 
reified form. For example, consider the following field 
declaration in Junicon: 

 local x; 

This is equivalently transformed to: 

 Object x; 
 IconVar x_r = new IconVar(()->x, (rhs)->x=rhs); 

Methods are similarly defined in plain form, and then 
exposed as method references with the same name. Since 
methods in Unicon are variadic, i.e., they can take any 
number of arguments, they are effectively translated into 
variadic lambda expressions that return an iterator. For 
example, consider the following method definition in 
Junicon: 

 method M(x,y) { body } 

This is equivalently transformed to: 
 Object M = (VariadicFunction) this::M; 
 Object M (Object... args) { ⟦ body ⟧ञ } 

where ࣮ denotes the translation of the method body. Further 
details of the transformations for expressions and classes are 
provided in [7]. 

D. Synthesis of Co-expressions and Generator Proxies 

To support concurrent generators, the transformations 
also synthesize co-expressions as well as multi-threaded 
generator proxies. For co-expressions as well as their 
multithreaded proxies, the local environment is shadowed as 
described in Section 3, which requires textually scoping up 
for referenced locals and creating a lambda expression 
around the generator that isolates these locals. Code for co-
expression as well as proxy creation is then generated, 
invoking the suspendable iterator runtime. In the latter area, 
a single core class, IconCoExpression, provides a unified 
model for handling first-class generators as well as co-
expressions and multithreaded proxies, and provides support 
for activating co-expressions, i.e., switching between 
coroutines, as well as thread creation and communication 
using blocking queues.  

Figure 5 shows the result of applying the above 
transformations to a simple method for spawning a data-
parallel computation using concurrent generators. The 
method in Junicon before translation is as follows: 

  def spawnMap (f, chunk) { 
  suspend ! (|> f(!chunk)); 
  } 

In Figure 5, in the method body, transformation has 
unraveled generator expressions into the composition of 
iterators using forms such as product, embodied in 
IconProduct as well as similarly named classes for operations 
and function invocation. As can be seen in Figure 5, 
spawning a thread for a co-expression is transformed into an 
IconCoExpression constructor over a closure for invoking f  
that first copies the referenced local environment, chunk. The 
IconCoExpression then handles the ancillary mechanics of 
creating the thread, activating the closure within it, and 
coordinating the communication of results using blocking 
queues. Thread creation and allocation leverage Java’s 
facilities for thread pool management and support for  multi-
core execution. 

After translation to Java, the function body itself is an 
iterator constructor, so that the function when invoked will 
return an iterator. For optimization the iterator body is 
cached in a stack upon method return, and then reused. Since 



Unicon methods are variadic, the signature of the exposed 
method, shown at the top of Figure 5, is a variadic lambda 
expression that returns an iterator. 

VI. IMPLEMENTATION 

We have implemented the transformations for embedding 
Unicon into Java as well as its dynamic analogue Groovy, 
and housed them within a generic interpretive harness. A key 
aspect of providing support for multiple languages lies in the 
structure of the harness itself.  The harness provides a 
cascading set of interpreters that at each stage transforms its 

input and either executes it on a script engine, such as for 
Groovy, or chooses another interpreter to pass to for further 
transformation. In particular the outermost instantiation of 
the harness is a meta-interpreter that detects the embedded 
language and its context using scoped annotations, and 
dispatches statements to the appropriate sub-interpreter for 
transformation. 

The Junicon interpreter is an instantiation of the above 
harness implemented in Java, customized with a 
preprocessor, a Javacc LL(k) parser for Unicon that emits 
XML, transforms for normalization and translation to either 
Java or Groovy, and a Java kernel that implements the 
stream-like interface for composing suspendable iterators. 
By enabling embedding within either Groovy or Java, the 
interpreter can function both interactively and as a tool that 
can emit its output for compilation that is free of 
dependencies on Groovy. 

VII. EVALUATION 

To evaluate the utility of the techniques for embedding 
concurrent generators, several variants of the program 
described in Figure 3 were compiled to Java, and their 
performance measured against equivalent Java stream-based 
programs. The suite of embedded Unicon programs 
consisted of a sequential word-count, a pipeline-parallel 
word-count that split the hash function into two tasks, a map-
reduce word-count that spread the hash function and its 
summation reduction over chunks of data, and a data-parallel 
word-count that only differed in performing summation over 
the sequence returned from flattening the chunks, thus 
splitting out the reduction and effecting serialization.  The 
suite of Java programs similarly consisted of a sequential 
word-count, a pipelined version built using BlockingQueues 
over two threads, a parallel stream-based version that 
implemented map-reduce, and a data-parallel version that 
was also stream-based but that split out the reduction. Both 
suites used arbitrary precision arithmetic, which is implicit in 
Unicon but must be made explicit in Java.  

The Java Microbenchmarking Harness (JMH) was used 
to measure the performance of both suites on a Titan Quad 
AMD Opteron 6272 with 64-cores and 32GB of memory 
running Linux Fedora 20, with 20 warmup iterations and 20 
test iterations. In addition, a second heavyweight set of 
variants of the programs in both suites was also 
benchmarked, which increased the complexity of the hash 
function components and so the weight of the threaded tasks, 
in order to explore the relative overhead of coordination 
using concurrent generators. 

Figure 6 shows the relative performance of embedded 
concurrent generators when translated to Java.  Execution 
time is normalized with respect to that of the Java parallel 
stream benchmark for each of the lightweight and 
heavyweight sets, respectively.  Confidence intervals at 99%, 
shown by whiskers at the top of the histogram bars, showed 
negligible variance.  In Figure 6, the eight histograms on the 
left use the lightweight versions of the wordToNumber and 
hashNumber functions described in Figure 3 that constitute 
the parallel computation nodes.  On the right of Figure 6 are 
shown eight corresponding histograms that use the far more 

Figure 5.   Transformation of concurrent generators to Java. 

MethodBodyCache methodCache = new MethodBodyCache(); 
public Object spawnMap = (VariadicFunction) this::spawnMap; 
public IIconIterator spawnMap (Object... args) { 
  // Reuse method body 
  IconIterator body = methodCache.getFree("spawnMap_m"); 
  if (body != null) { return body.reset().unpackArgs(args); }; 
  // Reified parameters 
  IconVar f_r = new IconVar().local(); 
  IconVar chunk_r = new IconVar().local(); 
  // Temporaries 
  IconTmp x_1_r = new IconTmp(); 
  IconTmp x_0_r = new IconTmp(); 
  // Unpack parameters 
  VariadicFunction unpack = (Object... params) -> { 
    if (params ==  null) { params = IIconAtom.getEmptyArray(); }; 
    f_r.set((params.length > 0) ? params[0] : null); 
    chunk_r.set((params.length > 1) ? params[1] : null); 
    return null; 
  }; 
  // Method body 
  body = new IconSequence(new IconSuspend( 
    new IconProduct(new IconIn(x_1_r, ( 
    new IconCoExpression( (Object... args_2) -> { 
      // Reified parameters 
      IconVar chunk_s_r = new IconVar().local(); 
      IconVar f_s_r = new IconVar().local(); 
      // Unpack parameters 
      VariadicFunction unpack_4 = (Object... params) -> { 
        if (params ==  null) { params = IIconAtom.getEmptyArray(); };
        chunk_s_r.set((params.length > 0) ? params[0] : null); 
        f_s_r.set((params.length > 1) ? params[1] : null); 
        return null; 
      }; 
      // Method body 
      IconIterator body_3 = new IconProduct(new IconIn(x_0_r,  
        new IconPromote(chunk_s_r)), new IconInvokeIterator(()->    
        ((VariadicFunction) f_s_r.deref()).apply(x_0_r.deref()))); 
      // Return body after unpacking arguments  
      body_3.setUnpackClosure(unpack_4).unpackArgs(args_2); 
      return body_3; 
    },  () -> { return IconList.createArray(chunk_r.deref(),  
    f_r.deref()); }).createPipe())), new IconPromote(x_1_r))),  
    new IconNullIterator(), new IconFail()); 
  // Return body after unpacking arguments  
  body.setCache(methodCache, "spawnMap_m"); 
  body.setUnpackClosure(unpack).unpackArgs(args); 
  return body; 
} 



heavyweight and computationally intensive hash functions, 
by a factor of roughly 80, achieved using trigonometry and 
prime number functions of Java’s Math and BigInteger 
libraries. 

The results showed that, as would be expected of a 
dynamic language, embedded generators yield worse 
performance than their native Java counterparts; however, 
the penalty is well under an order of magnitude. Moreover, 
as can be observed in the right of Figure 6, as the weight of 
the computational nodes increases, the relative overhead of 
the embedded concurrent generators significantly decreases. 
Indeed, even with map-reduce expressed entirely using 
concurrent generators, the performance impact on the right 
of Figure 6 is negligible. When used to coordinate complex 
tasks, concurrent generators may thus potentially provide 
performance roughly comparable to that of Java streams. 

Another salient point is that the relative improvement 
among the embedded programs is roughly consistent with 
that of the comparable Java programs.  For the purposes of 
exploration in a prototyping scenario, ideally it should be the 
case that the relative observed performance among 
experimental alternatives is preserved under refinement.  
While the benchmark results are preliminary and a proof of 
concept, they demonstrate the potential feasibility of 
exploration using concurrent generators. 

VIII. RELATED WORK 

There are a variety of dynamic languages that support 
parallelism. These include Swift [3], which supports implicit 
parallelism in which every data-element is single-assignment 
and behaves like a future. Oz [4] is a multi-paradigm 
language for distributed programming whose explicit threads 
also use single-assignment dataflow variables. Julia [5] 
provides explicit task spawning and synchronization based 
on futures as well as blocking channels, and also supports 
metaprogramming through hygenic macros. Parallel Ruby 
[6] is similarly based on explicit task parallelism using 
futures as well as pipelines. In contrast to the above efforts, 
our approach is one of mixed-language embedding rather 
than multi-paradigm integration within a single language, 
and focuses on grafting a simple model of concurrent 
generators onto other languages through transformations that 

enable interoperability. We can thus leverage and integrate 
with the broader concurrency mechanisms of the underlying 
language, rather than directly incorporating multiple 
paradigms of concurrency. 

The implicitly aggregate nature of goal-directed 
evaluation bears striking similarity to Java streams. Indeed, 
many of the stream composition operators such as map, 
reduce, and limit are either implicit or present as Icon 
primitives. Generators differ, however, in the support for 
suspendable iteration, as well as the provision of forms such 
as repeat and product that depend on the ability to be 
restarted.  It bears noting that, while succinct, Java parallel 
streams are bound to a specific functional map-reduce style 
and implementation, which may hinder algorithmic 
exploration and may not be suitable to expressing other 
paradigms of concurrency. 

The extension of Java iterators to support suspendable 
iteration bears some similarity to other work on interruptible 
iterators in JMatch [19].  There the focus was on extending 
coroutine iterators to handle update operations on the 
underlying data structure.  Interruptible iterators for ML 
were also examined by Filliatre [20] using purely functional 
persistent cursors that also allow backtracking.  In contrast, 
our iterators integrate suspend with failure-driven 
composition in a tightly knitted logic. It is also feasible to 
alternatively use multithreading to create a coroutine-like 
implementation of suspend in generator functions, as is 
provided in several Groovy and Java extension classes. Our 
techniques for embedding goal-directed evaluation not only 
enable the use of suspend in languages otherwise missing 
such a capability, but implement it without multithreading. 

The challenges of formalizing and implementing goal-
directed evaluation have given rise to a variety of research 
efforts.  Principal among these efforts for Icon were 
continuation-based cross-translators [21, 22, 23, 24], a 
monad semantics for a small subset with compilation by 
partial evaluation [25], and a Java implementation called 
Jcon [26, 27]. The Jcon implementation in particular faced 
difficulties in transparently interfacing with other Java 
programs due to its instrumentation of data types and 
expressions with suspend and resume advice as well as its 
reliance on direct bytecode generation. In contrast to these 
efforts our transformations rely on flattening to do the work 
of instrumentation or higher-order functions used in monads, 
and so enable interoperability. Our research also addresses a 
wider set of concerns including generator propagation in an 
object-oriented setting. Under our approach certain 
problematic features of Icon and Unicon such as concurrency 
[8] become simpler to implement. Lastly, and perhaps most 
importantly, our research focuses on the larger problem of 
mixed-language embedding of goal-directed evaluation into 
other object-oriented languages. 

IX. CONCLUSIONS 

In this paper we introduced a simple model of explicit 
concurrency for generators, and developed a technique for 
embedding such concurrent generators into other languages 
based on program transformation.  We presented a novel 
form of annotations, called scoped annotations, that are used 

Figure 6.   Performance when translated to Java. 
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in conjunction with the transformations to support mixed-
language integration.  The transformations use flattening to 
unravel the syntax of pervasive generators to a conventional 
form, which is key to enabling interoperability. In the area of 
concurrency the transformations synthesize co-expressions 
that shadow the local environment, as well as synthesize 
multi-threaded generator proxies, and so enable succinctly 
expressing parallel pipelining. The transformations are 
implemented in an interpretive harness that can target Java as 
well as its dynamic analogue Groovy, and so realize a tool 
that can function both interactively and as a translator for 
compilation. In particular the provision for interactive 
evaluation enhances the ability for exploration and 
prototyping of parallel programs for multi-core architectures. 
We demonstrated the utility of the approach in building 
higher-order abstractions such as map-reduce, and evaluated 
their performance against equivalent Java stream-based 
programs. 

Currently the implementation supports the full set of 
goal-directed constructs and operators, including those for 
concurrency and co-expressions, as well as most of Icon’s 
built-in functions.  Future efforts will focus on further 
evaluating and refining concurrency abstractions for 
generators. Lastly, program monitoring and debugging 
within a transformational framework is an area to be further 
explored. 
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